Spaces:
Running
Running
File size: 2,144 Bytes
884e760 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
import gradio as gr
from PIL import Image
import requests
from io import BytesIO
import torch
from torchvision import transforms
from diffusers import AutoencoderKL, LCMScheduler
from pipeline_controlnet_sd_xl import StableDiffusionXLControlNetPipeline
from controlnet import ControlNetModel
# Define helper functions
def download_image(url):
response = requests.get(url)
return Image.open(BytesIO(response.content)).convert("RGB")
def load_model():
# Load model components
controlnet = ControlNetModel().from_pretrained("briaai/DEV-ControlNetInpaintingFast", torch_dtype=torch.float16)
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
pipe = StableDiffusionXLControlNetPipeline.from_pretrained("briaai/BRIA-2.3", controlnet=controlnet.to(dtype=torch.float16), torch_dtype=torch.float16, vae=vae)
pipe.to('cuda')
return pipe
pipe = load_model()
# Define the inpainting function
def inpaint(image, mask):
# Process image and mask
image = image.resize((1024, 1024)).convert("RGB")
mask = mask.resize((1024, 1024)).convert("L")
# Transform to tensor
image_transform = transforms.ToTensor()
image_tensor = image_transform(image).unsqueeze(0).to('cuda')
mask_tensor = image_transform(mask).unsqueeze(0).to('cuda')
mask_tensor = (mask_tensor > 0.5).float() # binarize mask
# Generate image
with torch.no_grad():
result = pipe(prompt="A park bench", init_image=image_tensor, mask_image=mask_tensor, num_inference_steps=50).images[0]
return transforms.ToPILImage()(result.squeeze(0))
# Define the interface
interface = gr.Interface(fn=inpaint,
inputs=[gr.inputs.Image(type="pil", label="Original Image"), gr.inputs.Image(type="pil", label="Mask Image")],
outputs=gr.outputs.Image(type="pil", label="Inpainted Image"),
title="Stable Diffusion XL ControlNet Inpainting",
description="Upload an image and its corresponding mask to inpaint the specified area.")
if __name__ == "__main__":
interface.launch() |