Spaces:
Running
Running
yonishafir
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -6,6 +6,20 @@ import os
|
|
6 |
from PIL import Image
|
7 |
hf_token = os.environ.get("HF_TOKEN")
|
8 |
from diffusers import StableDiffusionXLInpaintPipeline, DDIMScheduler, UNet2DConditionModel
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
ratios_map = {
|
11 |
0.5:{"width":704,"height":1408},
|
@@ -28,6 +42,30 @@ ratios_map = {
|
|
28 |
}
|
29 |
ratios = np.array(list(ratios_map.keys()))
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
def get_size(init_image):
|
32 |
w,h=init_image.size
|
33 |
curr_ratio = w/h
|
@@ -40,26 +78,33 @@ def get_size(init_image):
|
|
40 |
|
41 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
42 |
|
43 |
-
unet = UNet2DConditionModel.from_pretrained(
|
44 |
-
"briaai/BRIA-2.2-Inpainting",
|
45 |
-
subfolder="unet",
|
46 |
-
torch_dtype=torch.float16,
|
47 |
-
)
|
48 |
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
)
|
|
|
|
|
|
|
58 |
|
59 |
-
|
60 |
-
pipe.force_zeros_for_empty_prompt = False
|
61 |
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
|
65 |
def read_content(file_path: str) -> str:
|
@@ -70,26 +115,74 @@ def read_content(file_path: str) -> str:
|
|
70 |
|
71 |
return content
|
72 |
|
73 |
-
def predict(dict, prompt="", negative_prompt=
|
74 |
if negative_prompt == "":
|
75 |
negative_prompt = None
|
76 |
|
77 |
|
78 |
init_image = dict["image"].convert("RGB")#.resize((1024, 1024))
|
79 |
-
mask = dict["mask"].convert("
|
80 |
|
81 |
-
|
82 |
|
83 |
-
init_image = init_image.resize((
|
84 |
-
mask = mask.resize((
|
85 |
|
86 |
# Resize to nearest ratio ?
|
87 |
|
88 |
-
mask = np.array(mask)
|
89 |
-
mask[mask>0]=255
|
90 |
-
mask = Image.fromarray(mask)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
return output.images[0] #, gr.update(visible=True)
|
95 |
|
|
|
6 |
from PIL import Image
|
7 |
hf_token = os.environ.get("HF_TOKEN")
|
8 |
from diffusers import StableDiffusionXLInpaintPipeline, DDIMScheduler, UNet2DConditionModel
|
9 |
+
from diffusers import (
|
10 |
+
AutoencoderKL,
|
11 |
+
LCMScheduler,
|
12 |
+
)
|
13 |
+
from pipeline_controlnet_sd_xl import StableDiffusionXLControlNetPipeline
|
14 |
+
from controlnet import ControlNetModel, ControlNetConditioningEmbedding
|
15 |
+
import torch
|
16 |
+
import numpy as np
|
17 |
+
from PIL import Image
|
18 |
+
import requests
|
19 |
+
import PIL
|
20 |
+
from io import BytesIO
|
21 |
+
from torchvision import transforms
|
22 |
+
|
23 |
|
24 |
ratios_map = {
|
25 |
0.5:{"width":704,"height":1408},
|
|
|
42 |
}
|
43 |
ratios = np.array(list(ratios_map.keys()))
|
44 |
|
45 |
+
image_transforms = transforms.Compose(
|
46 |
+
[
|
47 |
+
transforms.ToTensor(),
|
48 |
+
]
|
49 |
+
)
|
50 |
+
|
51 |
+
default_negative_prompt = "Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers"
|
52 |
+
|
53 |
+
|
54 |
+
def get_masked_image(image, image_mask, width, height):
|
55 |
+
image_mask = image_mask # inpaint area is white
|
56 |
+
image_mask = image_mask.resize((width, height)) # object to remove is white (1)
|
57 |
+
image_mask_pil = image_mask
|
58 |
+
image = np.array(image.convert("RGB")).astype(np.float32) / 255.0
|
59 |
+
image_mask = np.array(image_mask_pil.convert("L")).astype(np.float32) / 255.0
|
60 |
+
assert image.shape[0:1] == image_mask.shape[0:1], "image and image_mask must have the same image size"
|
61 |
+
masked_image_to_present = image.copy()
|
62 |
+
masked_image_to_present[image_mask > 0.5] = (0.5,0.5,0.5) # set as masked pixel
|
63 |
+
image[image_mask > 0.5] = 0.5 # set as masked pixel - s.t. will be grey
|
64 |
+
image = Image.fromarray((image * 255.0).astype(np.uint8))
|
65 |
+
masked_image_to_present = Image.fromarray((masked_image_to_present * 255.0).astype(np.uint8))
|
66 |
+
return image, image_mask_pil, masked_image_to_present
|
67 |
+
|
68 |
+
|
69 |
def get_size(init_image):
|
70 |
w,h=init_image.size
|
71 |
curr_ratio = w/h
|
|
|
78 |
|
79 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
80 |
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
+
# Load, init model
|
83 |
+
controlnet = ControlNetModel().from_config('briaai/DEV-ControlNetInpaintingFast', torch_dtype=torch.float16)
|
84 |
+
controlnet.controlnet_cond_embedding = ControlNetConditioningEmbedding(
|
85 |
+
conditioning_embedding_channels=320,
|
86 |
+
conditioning_channels = 5
|
87 |
+
)
|
88 |
|
89 |
+
controlnet = ControlNetModel().from_pretrained("briaai/DEV-ControlNetInpaintingFast", torch_dtype=torch.float16)
|
90 |
+
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
91 |
+
pipe = StableDiffusionXLControlNetPipeline.from_pretrained("briaai/BRIA-2.3", controlnet=controlnet.to(dtype=torch.float16), torch_dtype=torch.float16, vae=vae) #force_zeros_for_empty_prompt=False, # vae=vae)
|
92 |
+
|
93 |
+
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
94 |
+
pipe.load_lora_weights("briaai/BRIA-2.3-FAST-LORA")
|
95 |
+
pipe.fuse_lora()
|
96 |
+
|
97 |
+
pipe = pipe.to('cuda:0')
|
98 |
+
pipe.enable_xformers_memory_efficient_attention()
|
99 |
|
100 |
+
generator = torch.Generator(device='cuda:0').manual_seed(123456)
|
|
|
101 |
|
102 |
+
vae = pipe.vae
|
103 |
+
|
104 |
+
|
105 |
+
# pipe.force_zeros_for_empty_prompt = False
|
106 |
+
|
107 |
+
# default_negative_prompt= "" #"Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers"
|
108 |
|
109 |
|
110 |
def read_content(file_path: str) -> str:
|
|
|
115 |
|
116 |
return content
|
117 |
|
118 |
+
def predict(dict, prompt="", negative_prompt = default_negative_prompt, guidance_scale=1.2, steps=12, strength=1.0):
|
119 |
if negative_prompt == "":
|
120 |
negative_prompt = None
|
121 |
|
122 |
|
123 |
init_image = dict["image"].convert("RGB")#.resize((1024, 1024))
|
124 |
+
mask = dict["mask"].convert("L")#.resize((1024, 1024))
|
125 |
|
126 |
+
width, height = get_size(init_image)
|
127 |
|
128 |
+
init_image = init_image.resize((width, height))
|
129 |
+
mask = mask.resize((width, height))
|
130 |
|
131 |
# Resize to nearest ratio ?
|
132 |
|
133 |
+
# mask = np.array(mask)
|
134 |
+
# mask[mask>0]=255
|
135 |
+
# mask = Image.fromarray(mask)
|
136 |
+
|
137 |
+
|
138 |
+
masked_image, image_mask, masked_image_to_present = get_masked_image(init_image, mask, width, height)
|
139 |
+
masked_image_tensor = image_transforms(masked_image)
|
140 |
+
masked_image_tensor = (masked_image_tensor - 0.5) / 0.5
|
141 |
+
|
142 |
+
masked_image_tensor = masked_image_tensor.unsqueeze(0).to(device="cuda")
|
143 |
+
|
144 |
+
control_latents = vae.encode(
|
145 |
+
masked_image_tensor[:, :3, :, :].to(vae.dtype)
|
146 |
+
).latent_dist.sample()
|
147 |
|
148 |
+
control_latents = control_latents * vae.config.scaling_factor
|
149 |
+
|
150 |
+
image_mask = np.array(image_mask)[:,:]
|
151 |
+
mask_tensor = torch.tensor(image_mask, dtype=torch.float32)[None, ...]
|
152 |
+
# binarize the mask
|
153 |
+
mask_tensor = torch.where(mask_tensor > 128.0, 255.0, 0)
|
154 |
+
|
155 |
+
mask_tensor = mask_tensor / 255.0
|
156 |
+
|
157 |
+
mask_tensor = mask_tensor.to(device="cuda")
|
158 |
+
mask_resized = torch.nn.functional.interpolate(mask_tensor[None, ...], size=(control_latents.shape[2], control_latents.shape[3]), mode='nearest')
|
159 |
+
# mask_resized = mask_resized.to(torch.float16)
|
160 |
+
masked_image = torch.cat([control_latents, mask_resized], dim=1)
|
161 |
+
|
162 |
+
|
163 |
+
output = pipe(prompt = prompt,
|
164 |
+
width=width,
|
165 |
+
height=height,
|
166 |
+
negative_prompt=negative_prompt,
|
167 |
+
image = masked_image, # control image V
|
168 |
+
init_image = init_image,
|
169 |
+
mask_image=mask_tensor,
|
170 |
+
guidance_scale=guidance_scale,
|
171 |
+
num_inference_steps=int(steps),
|
172 |
+
strength=strength,
|
173 |
+
generator=generator,
|
174 |
+
controlnet_conditioning_sale=1.0, )
|
175 |
+
|
176 |
+
# gen_img = pipe(negative_prompt=default_negative_prompt, prompt=prompt,
|
177 |
+
# controlnet_conditioning_sale=1.0,
|
178 |
+
# num_inference_steps=12,
|
179 |
+
# height=height, width=width,
|
180 |
+
# image = masked_image, # control image
|
181 |
+
# init_image = init_image,
|
182 |
+
# mask_image = mask_tensor,
|
183 |
+
# guidance_scale = 1.2,
|
184 |
+
# generator=generator).images[0]
|
185 |
+
|
186 |
|
187 |
return output.images[0] #, gr.update(visible=True)
|
188 |
|