Spaces:
Running
Running
yonishafir
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -78,7 +78,6 @@ def get_size(init_image):
|
|
78 |
|
79 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
80 |
|
81 |
-
|
82 |
# Load, init model
|
83 |
controlnet = ControlNetModel().from_pretrained("briaai/DEV-ControlNetInpaintingFast", torch_dtype=torch.float16)
|
84 |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
@@ -96,10 +95,6 @@ generator = torch.Generator(device='cuda').manual_seed(123456)
|
|
96 |
vae = pipe.vae
|
97 |
|
98 |
pipe.enable_model_cpu_offload()
|
99 |
-
# pipe.force_zeros_for_empty_prompt = False
|
100 |
-
|
101 |
-
# default_negative_prompt= "" #"Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers"
|
102 |
-
|
103 |
|
104 |
def read_content(file_path: str) -> str:
|
105 |
"""read the content of target file
|
@@ -113,21 +108,14 @@ def predict(dict, prompt="", negative_prompt = default_negative_prompt, guidance
|
|
113 |
if negative_prompt == "":
|
114 |
negative_prompt = None
|
115 |
|
116 |
-
|
117 |
-
|
118 |
-
# mask = dict["mask"].convert("L").resize((1024, 1024))
|
119 |
|
120 |
width, height = get_size(init_image)
|
121 |
|
122 |
init_image = init_image.resize((width, height))
|
123 |
mask = mask.resize((width, height))
|
124 |
|
125 |
-
# Resize to nearest ratio ?
|
126 |
-
|
127 |
-
# mask = np.array(mask)
|
128 |
-
# mask[mask>0]=255
|
129 |
-
# mask = Image.fromarray(mask)
|
130 |
-
|
131 |
|
132 |
masked_image, image_mask, masked_image_to_present = get_masked_image(init_image, mask, width, height)
|
133 |
masked_image_tensor = image_transforms(masked_image)
|
|
|
78 |
|
79 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
80 |
|
|
|
81 |
# Load, init model
|
82 |
controlnet = ControlNetModel().from_pretrained("briaai/DEV-ControlNetInpaintingFast", torch_dtype=torch.float16)
|
83 |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
|
|
95 |
vae = pipe.vae
|
96 |
|
97 |
pipe.enable_model_cpu_offload()
|
|
|
|
|
|
|
|
|
98 |
|
99 |
def read_content(file_path: str) -> str:
|
100 |
"""read the content of target file
|
|
|
108 |
if negative_prompt == "":
|
109 |
negative_prompt = None
|
110 |
|
111 |
+
init_image = dict["image"].convert("RGB")#.resize((1024, 1024))
|
112 |
+
mask = dict["mask"].convert("L")#.resize((1024, 1024))
|
|
|
113 |
|
114 |
width, height = get_size(init_image)
|
115 |
|
116 |
init_image = init_image.resize((width, height))
|
117 |
mask = mask.resize((width, height))
|
118 |
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
masked_image, image_mask, masked_image_to_present = get_masked_image(init_image, mask, width, height)
|
121 |
masked_image_tensor = image_transforms(masked_image)
|