dvir-bria commited on
Commit
c5bc6b4
1 Parent(s): d3b8cf3

Delete pipeline_controlnet_sd_xl.py

Browse files
Files changed (1) hide show
  1. pipeline_controlnet_sd_xl.py +0 -1465
pipeline_controlnet_sd_xl.py DELETED
@@ -1,1465 +0,0 @@
1
- # Copyright 2023 The HuggingFace Team. All rights reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
-
16
- import inspect
17
- from typing import Any, Callable, Dict, List, Optional, Tuple, Union
18
-
19
- import numpy as np
20
- import PIL.Image
21
- import torch
22
- import torch.nn.functional as F
23
- from transformers import (
24
- CLIPImageProcessor,
25
- CLIPTextModel,
26
- CLIPTextModelWithProjection,
27
- CLIPTokenizer,
28
- CLIPVisionModelWithProjection,
29
- )
30
-
31
- from diffusers.utils.import_utils import is_invisible_watermark_available
32
-
33
- from image_processor import PipelineImageInput, VaeImageProcessor
34
- from diffusers.loaders import (
35
- FromSingleFileMixin,
36
- IPAdapterMixin,
37
- StableDiffusionXLLoraLoaderMixin,
38
- TextualInversionLoaderMixin,
39
- )
40
- from controlnet import ControlNetModel
41
- # from diffusers.models import AutoencoderKL, ControlNetModel, ImageProjection, UNet2DConditionModel
42
- from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
43
- from diffusers.models.attention_processor import (
44
- AttnProcessor2_0,
45
- LoRAAttnProcessor2_0,
46
- LoRAXFormersAttnProcessor,
47
- XFormersAttnProcessor,
48
- )
49
- from diffusers.models.lora import adjust_lora_scale_text_encoder
50
- from diffusers.schedulers import KarrasDiffusionSchedulers
51
- from diffusers.utils import (
52
- USE_PEFT_BACKEND,
53
- deprecate,
54
- logging,
55
- replace_example_docstring,
56
- scale_lora_layers,
57
- unscale_lora_layers,
58
- )
59
- from diffusers.utils.torch_utils import is_compiled_module, is_torch_version, randn_tensor
60
- from diffusers.pipelines.pipeline_utils import DiffusionPipeline
61
- from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
62
-
63
-
64
- if is_invisible_watermark_available():
65
- from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker
66
-
67
- from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
68
-
69
-
70
- logger = logging.get_logger(__name__) # pylint: disable=invalid-name
71
-
72
-
73
- EXAMPLE_DOC_STRING = """
74
- Examples:
75
- ```py
76
- >>> # !pip install opencv-python transformers accelerate
77
- >>> from diffusers import StableDiffusionXLControlNetPipeline, ControlNetModel, AutoencoderKL
78
- >>> from diffusers.utils import load_image
79
- >>> import numpy as np
80
- >>> import torch
81
-
82
- >>> import cv2
83
- >>> from PIL import Image
84
-
85
- >>> prompt = "aerial view, a futuristic research complex in a bright foggy jungle, hard lighting"
86
- >>> negative_prompt = "low quality, bad quality, sketches"
87
-
88
- >>> # download an image
89
- >>> image = load_image(
90
- ... "https://hf.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png"
91
- ... )
92
-
93
- >>> # initialize the models and pipeline
94
- >>> controlnet_conditioning_scale = 0.5 # recommended for good generalization
95
- >>> controlnet = ControlNetModel.from_pretrained(
96
- ... "diffusers/controlnet-canny-sdxl-1.0", torch_dtype=torch.float16
97
- ... )
98
- >>> vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
99
- >>> pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
100
- ... "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, vae=vae, torch_dtype=torch.float16
101
- ... )
102
- >>> pipe.enable_model_cpu_offload()
103
-
104
- >>> # get canny image
105
- >>> image = np.array(image)
106
- >>> image = cv2.Canny(image, 100, 200)
107
- >>> image = image[:, :, None]
108
- >>> image = np.concatenate([image, image, image], axis=2)
109
- >>> canny_image = Image.fromarray(image)
110
-
111
- >>> # generate image
112
- >>> image = pipe(
113
- ... prompt, controlnet_conditioning_scale=controlnet_conditioning_scale, image=canny_image
114
- ... ).images[0]
115
- ```
116
- """
117
-
118
-
119
- class StableDiffusionXLControlNetPipeline(
120
- DiffusionPipeline,
121
- TextualInversionLoaderMixin,
122
- StableDiffusionXLLoraLoaderMixin,
123
- IPAdapterMixin,
124
- FromSingleFileMixin,
125
- ):
126
- r"""
127
- Pipeline for text-to-image generation using Stable Diffusion XL with ControlNet guidance.
128
-
129
- This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
130
- implemented for all pipelines (downloading, saving, running on a particular device, etc.).
131
-
132
- The pipeline also inherits the following loading methods:
133
- - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
134
- - [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
135
- - [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
136
- - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
137
- - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
138
-
139
- Args:
140
- vae ([`AutoencoderKL`]):
141
- Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
142
- text_encoder ([`~transformers.CLIPTextModel`]):
143
- Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
144
- text_encoder_2 ([`~transformers.CLIPTextModelWithProjection`]):
145
- Second frozen text-encoder
146
- ([laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)).
147
- tokenizer ([`~transformers.CLIPTokenizer`]):
148
- A `CLIPTokenizer` to tokenize text.
149
- tokenizer_2 ([`~transformers.CLIPTokenizer`]):
150
- A `CLIPTokenizer` to tokenize text.
151
- unet ([`UNet2DConditionModel`]):
152
- A `UNet2DConditionModel` to denoise the encoded image latents.
153
- controlnet ([`ControlNetModel`] or `List[ControlNetModel]`):
154
- Provides additional conditioning to the `unet` during the denoising process. If you set multiple
155
- ControlNets as a list, the outputs from each ControlNet are added together to create one combined
156
- additional conditioning.
157
- scheduler ([`SchedulerMixin`]):
158
- A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
159
- [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
160
- force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`):
161
- Whether the negative prompt embeddings should always be set to 0. Also see the config of
162
- `stabilityai/stable-diffusion-xl-base-1-0`.
163
- add_watermarker (`bool`, *optional*):
164
- Whether to use the [invisible_watermark](https://github.com/ShieldMnt/invisible-watermark/) library to
165
- watermark output images. If not defined, it defaults to `True` if the package is installed; otherwise no
166
- watermarker is used.
167
- """
168
-
169
- # leave controlnet out on purpose because it iterates with unet
170
- model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->unet->vae"
171
- _optional_components = [
172
- "tokenizer",
173
- "tokenizer_2",
174
- "text_encoder",
175
- "text_encoder_2",
176
- "feature_extractor",
177
- "image_encoder",
178
- ]
179
- _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
180
-
181
- def __init__(
182
- self,
183
- vae: AutoencoderKL,
184
- text_encoder: CLIPTextModel,
185
- text_encoder_2: CLIPTextModelWithProjection,
186
- tokenizer: CLIPTokenizer,
187
- tokenizer_2: CLIPTokenizer,
188
- unet: UNet2DConditionModel,
189
- controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel],
190
- scheduler: KarrasDiffusionSchedulers,
191
- force_zeros_for_empty_prompt: bool = True,
192
- add_watermarker: Optional[bool] = None,
193
- feature_extractor: CLIPImageProcessor = None,
194
- image_encoder: CLIPVisionModelWithProjection = None,
195
- ):
196
- super().__init__()
197
-
198
- if isinstance(controlnet, (list, tuple)):
199
- controlnet = MultiControlNetModel(controlnet)
200
-
201
- self.register_modules(
202
- vae=vae,
203
- text_encoder=text_encoder,
204
- text_encoder_2=text_encoder_2,
205
- tokenizer=tokenizer,
206
- tokenizer_2=tokenizer_2,
207
- unet=unet,
208
- controlnet=controlnet,
209
- scheduler=scheduler,
210
- feature_extractor=feature_extractor,
211
- image_encoder=image_encoder,
212
- )
213
- self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
214
- self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True)
215
- self.control_image_processor = VaeImageProcessor(
216
- vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
217
- )
218
- add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available()
219
-
220
- if add_watermarker:
221
- self.watermark = StableDiffusionXLWatermarker()
222
- else:
223
- self.watermark = None
224
-
225
- self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
226
-
227
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
228
- def enable_vae_slicing(self):
229
- r"""
230
- Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
231
- compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
232
- """
233
- self.vae.enable_slicing()
234
-
235
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
236
- def disable_vae_slicing(self):
237
- r"""
238
- Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
239
- computing decoding in one step.
240
- """
241
- self.vae.disable_slicing()
242
-
243
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling
244
- def enable_vae_tiling(self):
245
- r"""
246
- Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
247
- compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
248
- processing larger images.
249
- """
250
- self.vae.enable_tiling()
251
-
252
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
253
- def disable_vae_tiling(self):
254
- r"""
255
- Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
256
- computing decoding in one step.
257
- """
258
- self.vae.disable_tiling()
259
-
260
- # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt
261
- def encode_prompt(
262
- self,
263
- prompt: str,
264
- prompt_2: Optional[str] = None,
265
- device: Optional[torch.device] = None,
266
- num_images_per_prompt: int = 1,
267
- do_classifier_free_guidance: bool = True,
268
- negative_prompt: Optional[str] = None,
269
- negative_prompt_2: Optional[str] = None,
270
- prompt_embeds: Optional[torch.FloatTensor] = None,
271
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
272
- pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
273
- negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
274
- lora_scale: Optional[float] = None,
275
- clip_skip: Optional[int] = None,
276
- ):
277
- r"""
278
- Encodes the prompt into text encoder hidden states.
279
-
280
- Args:
281
- prompt (`str` or `List[str]`, *optional*):
282
- prompt to be encoded
283
- prompt_2 (`str` or `List[str]`, *optional*):
284
- The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
285
- used in both text-encoders
286
- device: (`torch.device`):
287
- torch device
288
- num_images_per_prompt (`int`):
289
- number of images that should be generated per prompt
290
- do_classifier_free_guidance (`bool`):
291
- whether to use classifier free guidance or not
292
- negative_prompt (`str` or `List[str]`, *optional*):
293
- The prompt or prompts not to guide the image generation. If not defined, one has to pass
294
- `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
295
- less than `1`).
296
- negative_prompt_2 (`str` or `List[str]`, *optional*):
297
- The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
298
- `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
299
- prompt_embeds (`torch.FloatTensor`, *optional*):
300
- Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
301
- provided, text embeddings will be generated from `prompt` input argument.
302
- negative_prompt_embeds (`torch.FloatTensor`, *optional*):
303
- Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
304
- weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
305
- argument.
306
- pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
307
- Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
308
- If not provided, pooled text embeddings will be generated from `prompt` input argument.
309
- negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
310
- Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
311
- weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
312
- input argument.
313
- lora_scale (`float`, *optional*):
314
- A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
315
- clip_skip (`int`, *optional*):
316
- Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
317
- the output of the pre-final layer will be used for computing the prompt embeddings.
318
- """
319
- device = device or self._execution_device
320
-
321
- # set lora scale so that monkey patched LoRA
322
- # function of text encoder can correctly access it
323
- if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin):
324
- self._lora_scale = lora_scale
325
-
326
- # dynamically adjust the LoRA scale
327
- if self.text_encoder is not None:
328
- if not USE_PEFT_BACKEND:
329
- adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
330
- else:
331
- scale_lora_layers(self.text_encoder, lora_scale)
332
-
333
- if self.text_encoder_2 is not None:
334
- if not USE_PEFT_BACKEND:
335
- adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale)
336
- else:
337
- scale_lora_layers(self.text_encoder_2, lora_scale)
338
-
339
- prompt = [prompt] if isinstance(prompt, str) else prompt
340
-
341
- if prompt is not None:
342
- batch_size = len(prompt)
343
- else:
344
- batch_size = prompt_embeds.shape[0]
345
-
346
- # Define tokenizers and text encoders
347
- tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
348
- text_encoders = (
349
- [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
350
- )
351
-
352
- if prompt_embeds is None:
353
- prompt_2 = prompt_2 or prompt
354
- prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
355
-
356
- # textual inversion: procecss multi-vector tokens if necessary
357
- prompt_embeds_list = []
358
- prompts = [prompt, prompt_2]
359
- for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
360
- if isinstance(self, TextualInversionLoaderMixin):
361
- prompt = self.maybe_convert_prompt(prompt, tokenizer)
362
-
363
- text_inputs = tokenizer(
364
- prompt,
365
- padding="max_length",
366
- max_length=tokenizer.model_max_length,
367
- truncation=True,
368
- return_tensors="pt",
369
- )
370
-
371
- text_input_ids = text_inputs.input_ids
372
- untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
373
-
374
- if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
375
- text_input_ids, untruncated_ids
376
- ):
377
- removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
378
- logger.warning(
379
- "The following part of your input was truncated because CLIP can only handle sequences up to"
380
- f" {tokenizer.model_max_length} tokens: {removed_text}"
381
- )
382
-
383
- prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
384
-
385
- # We are only ALWAYS interested in the pooled output of the final text encoder
386
- pooled_prompt_embeds = prompt_embeds[0]
387
- if clip_skip is None:
388
- prompt_embeds = prompt_embeds.hidden_states[-2]
389
- else:
390
- # "2" because SDXL always indexes from the penultimate layer.
391
- prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)]
392
-
393
- prompt_embeds_list.append(prompt_embeds)
394
-
395
- prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
396
-
397
- # get unconditional embeddings for classifier free guidance
398
- zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
399
- if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
400
- negative_prompt_embeds = torch.zeros_like(prompt_embeds)
401
- negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
402
- elif do_classifier_free_guidance and negative_prompt_embeds is None:
403
- negative_prompt = negative_prompt or ""
404
- negative_prompt_2 = negative_prompt_2 or negative_prompt
405
-
406
- # normalize str to list
407
- negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
408
- negative_prompt_2 = (
409
- batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
410
- )
411
-
412
- uncond_tokens: List[str]
413
- if prompt is not None and type(prompt) is not type(negative_prompt):
414
- raise TypeError(
415
- f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
416
- f" {type(prompt)}."
417
- )
418
- elif batch_size != len(negative_prompt):
419
- raise ValueError(
420
- f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
421
- f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
422
- " the batch size of `prompt`."
423
- )
424
- else:
425
- uncond_tokens = [negative_prompt, negative_prompt_2]
426
-
427
- negative_prompt_embeds_list = []
428
- for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
429
- if isinstance(self, TextualInversionLoaderMixin):
430
- negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer)
431
-
432
- max_length = prompt_embeds.shape[1]
433
- uncond_input = tokenizer(
434
- negative_prompt,
435
- padding="max_length",
436
- max_length=max_length,
437
- truncation=True,
438
- return_tensors="pt",
439
- )
440
-
441
- negative_prompt_embeds = text_encoder(
442
- uncond_input.input_ids.to(device),
443
- output_hidden_states=True,
444
- )
445
- # We are only ALWAYS interested in the pooled output of the final text encoder
446
- negative_pooled_prompt_embeds = negative_prompt_embeds[0]
447
- negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
448
-
449
- negative_prompt_embeds_list.append(negative_prompt_embeds)
450
-
451
- negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
452
-
453
- if self.text_encoder_2 is not None:
454
- prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
455
- else:
456
- prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device)
457
-
458
- bs_embed, seq_len, _ = prompt_embeds.shape
459
- # duplicate text embeddings for each generation per prompt, using mps friendly method
460
- prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
461
- prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
462
-
463
- if do_classifier_free_guidance:
464
- # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
465
- seq_len = negative_prompt_embeds.shape[1]
466
-
467
- if self.text_encoder_2 is not None:
468
- negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
469
- else:
470
- negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device)
471
-
472
- negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
473
- negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
474
-
475
- pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
476
- bs_embed * num_images_per_prompt, -1
477
- )
478
- if do_classifier_free_guidance:
479
- negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
480
- bs_embed * num_images_per_prompt, -1
481
- )
482
-
483
- if self.text_encoder is not None:
484
- if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
485
- # Retrieve the original scale by scaling back the LoRA layers
486
- unscale_lora_layers(self.text_encoder, lora_scale)
487
-
488
- if self.text_encoder_2 is not None:
489
- if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
490
- # Retrieve the original scale by scaling back the LoRA layers
491
- unscale_lora_layers(self.text_encoder_2, lora_scale)
492
-
493
- return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
494
-
495
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
496
- def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
497
- dtype = next(self.image_encoder.parameters()).dtype
498
-
499
- if not isinstance(image, torch.Tensor):
500
- image = self.feature_extractor(image, return_tensors="pt").pixel_values
501
-
502
- image = image.to(device=device, dtype=dtype)
503
- if output_hidden_states:
504
- image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
505
- image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
506
- uncond_image_enc_hidden_states = self.image_encoder(
507
- torch.zeros_like(image), output_hidden_states=True
508
- ).hidden_states[-2]
509
- uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
510
- num_images_per_prompt, dim=0
511
- )
512
- return image_enc_hidden_states, uncond_image_enc_hidden_states
513
- else:
514
- image_embeds = self.image_encoder(image).image_embeds
515
- image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
516
- uncond_image_embeds = torch.zeros_like(image_embeds)
517
-
518
- return image_embeds, uncond_image_embeds
519
-
520
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
521
- def prepare_ip_adapter_image_embeds(self, ip_adapter_image, device, num_images_per_prompt):
522
- if not isinstance(ip_adapter_image, list):
523
- ip_adapter_image = [ip_adapter_image]
524
-
525
- if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
526
- raise ValueError(
527
- f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
528
- )
529
-
530
- image_embeds = []
531
- for single_ip_adapter_image, image_proj_layer in zip(
532
- ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
533
- ):
534
- output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
535
- single_image_embeds, single_negative_image_embeds = self.encode_image(
536
- single_ip_adapter_image, device, 1, output_hidden_state
537
- )
538
- single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
539
- single_negative_image_embeds = torch.stack([single_negative_image_embeds] * num_images_per_prompt, dim=0)
540
-
541
- if self.do_classifier_free_guidance:
542
- single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
543
- single_image_embeds = single_image_embeds.to(device)
544
-
545
- image_embeds.append(single_image_embeds)
546
-
547
- return image_embeds
548
-
549
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
550
- def prepare_extra_step_kwargs(self, generator, eta):
551
- # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
552
- # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
553
- # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
554
- # and should be between [0, 1]
555
-
556
- accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
557
- extra_step_kwargs = {}
558
- if accepts_eta:
559
- extra_step_kwargs["eta"] = eta
560
-
561
- # check if the scheduler accepts generator
562
- accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
563
- if accepts_generator:
564
- extra_step_kwargs["generator"] = generator
565
- return extra_step_kwargs
566
-
567
- def check_inputs(
568
- self,
569
- prompt,
570
- prompt_2,
571
- image,
572
- callback_steps,
573
- negative_prompt=None,
574
- negative_prompt_2=None,
575
- prompt_embeds=None,
576
- negative_prompt_embeds=None,
577
- pooled_prompt_embeds=None,
578
- negative_pooled_prompt_embeds=None,
579
- controlnet_conditioning_scale=1.0,
580
- control_guidance_start=0.0,
581
- control_guidance_end=1.0,
582
- callback_on_step_end_tensor_inputs=None,
583
- ):
584
- if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
585
- raise ValueError(
586
- f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
587
- f" {type(callback_steps)}."
588
- )
589
-
590
- if callback_on_step_end_tensor_inputs is not None and not all(
591
- k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
592
- ):
593
- raise ValueError(
594
- f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
595
- )
596
-
597
- if prompt is not None and prompt_embeds is not None:
598
- raise ValueError(
599
- f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
600
- " only forward one of the two."
601
- )
602
- elif prompt_2 is not None and prompt_embeds is not None:
603
- raise ValueError(
604
- f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
605
- " only forward one of the two."
606
- )
607
- elif prompt is None and prompt_embeds is None:
608
- raise ValueError(
609
- "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
610
- )
611
- elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
612
- raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
613
- elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
614
- raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
615
-
616
- if negative_prompt is not None and negative_prompt_embeds is not None:
617
- raise ValueError(
618
- f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
619
- f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
620
- )
621
- elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
622
- raise ValueError(
623
- f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
624
- f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
625
- )
626
-
627
- if prompt_embeds is not None and negative_prompt_embeds is not None:
628
- if prompt_embeds.shape != negative_prompt_embeds.shape:
629
- raise ValueError(
630
- "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
631
- f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
632
- f" {negative_prompt_embeds.shape}."
633
- )
634
-
635
- if prompt_embeds is not None and pooled_prompt_embeds is None:
636
- raise ValueError(
637
- "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
638
- )
639
-
640
- if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
641
- raise ValueError(
642
- "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
643
- )
644
-
645
- # `prompt` needs more sophisticated handling when there are multiple
646
- # conditionings.
647
- if isinstance(self.controlnet, MultiControlNetModel):
648
- if isinstance(prompt, list):
649
- logger.warning(
650
- f"You have {len(self.controlnet.nets)} ControlNets and you have passed {len(prompt)}"
651
- " prompts. The conditionings will be fixed across the prompts."
652
- )
653
-
654
- # Check `image`
655
- is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
656
- self.controlnet, torch._dynamo.eval_frame.OptimizedModule
657
- )
658
- if (
659
- isinstance(self.controlnet, ControlNetModel)
660
- or is_compiled
661
- and isinstance(self.controlnet._orig_mod, ControlNetModel)
662
- ):
663
- self.check_image(image, prompt, prompt_embeds)
664
- elif (
665
- isinstance(self.controlnet, MultiControlNetModel)
666
- or is_compiled
667
- and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
668
- ):
669
- if not isinstance(image, list):
670
- raise TypeError("For multiple controlnets: `image` must be type `list`")
671
-
672
- # When `image` is a nested list:
673
- # (e.g. [[canny_image_1, pose_image_1], [canny_image_2, pose_image_2]])
674
- elif any(isinstance(i, list) for i in image):
675
- raise ValueError("A single batch of multiple conditionings are supported at the moment.")
676
- elif len(image) != len(self.controlnet.nets):
677
- raise ValueError(
678
- f"For multiple controlnets: `image` must have the same length as the number of controlnets, but got {len(image)} images and {len(self.controlnet.nets)} ControlNets."
679
- )
680
-
681
- for image_ in image:
682
- self.check_image(image_, prompt, prompt_embeds)
683
- else:
684
- assert False
685
-
686
- # Check `controlnet_conditioning_scale`
687
- if (
688
- isinstance(self.controlnet, ControlNetModel)
689
- or is_compiled
690
- and isinstance(self.controlnet._orig_mod, ControlNetModel)
691
- ):
692
- if not isinstance(controlnet_conditioning_scale, float):
693
- raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
694
- elif (
695
- isinstance(self.controlnet, MultiControlNetModel)
696
- or is_compiled
697
- and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
698
- ):
699
- if isinstance(controlnet_conditioning_scale, list):
700
- if any(isinstance(i, list) for i in controlnet_conditioning_scale):
701
- raise ValueError("A single batch of multiple conditionings are supported at the moment.")
702
- elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len(
703
- self.controlnet.nets
704
- ):
705
- raise ValueError(
706
- "For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have"
707
- " the same length as the number of controlnets"
708
- )
709
- else:
710
- assert False
711
-
712
- if not isinstance(control_guidance_start, (tuple, list)):
713
- control_guidance_start = [control_guidance_start]
714
-
715
- if not isinstance(control_guidance_end, (tuple, list)):
716
- control_guidance_end = [control_guidance_end]
717
-
718
- if len(control_guidance_start) != len(control_guidance_end):
719
- raise ValueError(
720
- f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list."
721
- )
722
-
723
- if isinstance(self.controlnet, MultiControlNetModel):
724
- if len(control_guidance_start) != len(self.controlnet.nets):
725
- raise ValueError(
726
- f"`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}."
727
- )
728
-
729
- for start, end in zip(control_guidance_start, control_guidance_end):
730
- if start >= end:
731
- raise ValueError(
732
- f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}."
733
- )
734
- if start < 0.0:
735
- raise ValueError(f"control guidance start: {start} can't be smaller than 0.")
736
- if end > 1.0:
737
- raise ValueError(f"control guidance end: {end} can't be larger than 1.0.")
738
-
739
- # Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.check_image
740
- def check_image(self, image, prompt, prompt_embeds):
741
- image_is_pil = isinstance(image, PIL.Image.Image)
742
- image_is_tensor = isinstance(image, torch.Tensor)
743
- image_is_np = isinstance(image, np.ndarray)
744
- image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
745
- image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor)
746
- image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray)
747
-
748
- if (
749
- not image_is_pil
750
- and not image_is_tensor
751
- and not image_is_np
752
- and not image_is_pil_list
753
- and not image_is_tensor_list
754
- and not image_is_np_list
755
- ):
756
- raise TypeError(
757
- f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}"
758
- )
759
-
760
- if image_is_pil:
761
- image_batch_size = 1
762
- else:
763
- image_batch_size = len(image)
764
-
765
- if prompt is not None and isinstance(prompt, str):
766
- prompt_batch_size = 1
767
- elif prompt is not None and isinstance(prompt, list):
768
- prompt_batch_size = len(prompt)
769
- elif prompt_embeds is not None:
770
- prompt_batch_size = prompt_embeds.shape[0]
771
-
772
- if image_batch_size != 1 and image_batch_size != prompt_batch_size:
773
- raise ValueError(
774
- f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
775
- )
776
-
777
- # Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.prepare_image
778
- def prepare_image(
779
- self,
780
- image,
781
- width,
782
- height,
783
- batch_size,
784
- num_images_per_prompt,
785
- device,
786
- dtype,
787
- do_classifier_free_guidance=False,
788
- guess_mode=False,
789
- ):
790
- image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
791
- image_batch_size = image.shape[0]
792
-
793
- if image_batch_size == 1:
794
- repeat_by = batch_size
795
- else:
796
- # image batch size is the same as prompt batch size
797
- repeat_by = num_images_per_prompt
798
-
799
- image = image.repeat_interleave(repeat_by, dim=0)
800
-
801
- image = image.to(device=device, dtype=dtype)
802
-
803
- if do_classifier_free_guidance and not guess_mode:
804
- image = torch.cat([image] * 2)
805
-
806
- return image
807
-
808
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
809
- def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
810
- shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
811
- if isinstance(generator, list) and len(generator) != batch_size:
812
- raise ValueError(
813
- f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
814
- f" size of {batch_size}. Make sure the batch size matches the length of the generators."
815
- )
816
-
817
- if latents is None:
818
- latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
819
- else:
820
- latents = latents.to(device)
821
-
822
- # scale the initial noise by the standard deviation required by the scheduler
823
- latents = latents * self.scheduler.init_noise_sigma
824
- return latents
825
-
826
- # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline._get_add_time_ids
827
- def _get_add_time_ids(
828
- self, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None
829
- ):
830
- add_time_ids = list(original_size + crops_coords_top_left + target_size)
831
-
832
- passed_add_embed_dim = (
833
- self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim
834
- )
835
- expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
836
-
837
- if expected_add_embed_dim != passed_add_embed_dim:
838
- raise ValueError(
839
- f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
840
- )
841
-
842
- add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
843
- return add_time_ids
844
-
845
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
846
- def upcast_vae(self):
847
- dtype = self.vae.dtype
848
- self.vae.to(dtype=torch.float32)
849
- use_torch_2_0_or_xformers = isinstance(
850
- self.vae.decoder.mid_block.attentions[0].processor,
851
- (
852
- AttnProcessor2_0,
853
- XFormersAttnProcessor,
854
- LoRAXFormersAttnProcessor,
855
- LoRAAttnProcessor2_0,
856
- ),
857
- )
858
- # if xformers or torch_2_0 is used attention block does not need
859
- # to be in float32 which can save lots of memory
860
- if use_torch_2_0_or_xformers:
861
- self.vae.post_quant_conv.to(dtype)
862
- self.vae.decoder.conv_in.to(dtype)
863
- self.vae.decoder.mid_block.to(dtype)
864
-
865
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_freeu
866
- def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
867
- r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497.
868
-
869
- The suffixes after the scaling factors represent the stages where they are being applied.
870
-
871
- Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values
872
- that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
873
-
874
- Args:
875
- s1 (`float`):
876
- Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
877
- mitigate "oversmoothing effect" in the enhanced denoising process.
878
- s2 (`float`):
879
- Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
880
- mitigate "oversmoothing effect" in the enhanced denoising process.
881
- b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
882
- b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
883
- """
884
- if not hasattr(self, "unet"):
885
- raise ValueError("The pipeline must have `unet` for using FreeU.")
886
- self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2)
887
-
888
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_freeu
889
- def disable_freeu(self):
890
- """Disables the FreeU mechanism if enabled."""
891
- self.unet.disable_freeu()
892
-
893
- # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
894
- def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
895
- """
896
- See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
897
-
898
- Args:
899
- timesteps (`torch.Tensor`):
900
- generate embedding vectors at these timesteps
901
- embedding_dim (`int`, *optional*, defaults to 512):
902
- dimension of the embeddings to generate
903
- dtype:
904
- data type of the generated embeddings
905
-
906
- Returns:
907
- `torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
908
- """
909
- assert len(w.shape) == 1
910
- w = w * 1000.0
911
-
912
- half_dim = embedding_dim // 2
913
- emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
914
- emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
915
- emb = w.to(dtype)[:, None] * emb[None, :]
916
- emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
917
- if embedding_dim % 2 == 1: # zero pad
918
- emb = torch.nn.functional.pad(emb, (0, 1))
919
- assert emb.shape == (w.shape[0], embedding_dim)
920
- return emb
921
-
922
- @property
923
- def guidance_scale(self):
924
- return self._guidance_scale
925
-
926
- @property
927
- def clip_skip(self):
928
- return self._clip_skip
929
-
930
- # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
931
- # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
932
- # corresponds to doing no classifier free guidance.
933
- @property
934
- def do_classifier_free_guidance(self):
935
- return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
936
-
937
- @property
938
- def cross_attention_kwargs(self):
939
- return self._cross_attention_kwargs
940
-
941
- @property
942
- def num_timesteps(self):
943
- return self._num_timesteps
944
-
945
- @torch.no_grad()
946
- @replace_example_docstring(EXAMPLE_DOC_STRING)
947
- def __call__(
948
- self,
949
- prompt: Union[str, List[str]] = None,
950
- prompt_2: Optional[Union[str, List[str]]] = None,
951
- image: PipelineImageInput = None,
952
- height: Optional[int] = None,
953
- width: Optional[int] = None,
954
- num_inference_steps: int = 50,
955
- guidance_scale: float = 5.0,
956
- negative_prompt: Optional[Union[str, List[str]]] = None,
957
- negative_prompt_2: Optional[Union[str, List[str]]] = None,
958
- num_images_per_prompt: Optional[int] = 1,
959
- eta: float = 0.0,
960
- generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
961
- latents: Optional[torch.FloatTensor] = None,
962
- prompt_embeds: Optional[torch.FloatTensor] = None,
963
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
964
- pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
965
- negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
966
- ip_adapter_image: Optional[PipelineImageInput] = None,
967
- output_type: Optional[str] = "pil",
968
- return_dict: bool = True,
969
- cross_attention_kwargs: Optional[Dict[str, Any]] = None,
970
- controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
971
- guess_mode: bool = False,
972
- control_guidance_start: Union[float, List[float]] = 0.0,
973
- control_guidance_end: Union[float, List[float]] = 1.0,
974
- original_size: Tuple[int, int] = None,
975
- crops_coords_top_left: Tuple[int, int] = (0, 0),
976
- target_size: Tuple[int, int] = None,
977
- negative_original_size: Optional[Tuple[int, int]] = None,
978
- negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
979
- negative_target_size: Optional[Tuple[int, int]] = None,
980
- clip_skip: Optional[int] = None,
981
- callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
982
- callback_on_step_end_tensor_inputs: List[str] = ["latents"],
983
- **kwargs,
984
- ):
985
- r"""
986
- The call function to the pipeline for generation.
987
-
988
- Args:
989
- prompt (`str` or `List[str]`, *optional*):
990
- The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
991
- prompt_2 (`str` or `List[str]`, *optional*):
992
- The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
993
- used in both text-encoders.
994
- image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
995
- `List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
996
- The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
997
- specified as `torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be
998
- accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If height
999
- and/or width are passed, `image` is resized accordingly. If multiple ControlNets are specified in
1000
- `init`, images must be passed as a list such that each element of the list can be correctly batched for
1001
- input to a single ControlNet.
1002
- height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
1003
- The height in pixels of the generated image. Anything below 512 pixels won't work well for
1004
- [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
1005
- and checkpoints that are not specifically fine-tuned on low resolutions.
1006
- width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
1007
- The width in pixels of the generated image. Anything below 512 pixels won't work well for
1008
- [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
1009
- and checkpoints that are not specifically fine-tuned on low resolutions.
1010
- num_inference_steps (`int`, *optional*, defaults to 50):
1011
- The number of denoising steps. More denoising steps usually lead to a higher quality image at the
1012
- expense of slower inference.
1013
- guidance_scale (`float`, *optional*, defaults to 5.0):
1014
- A higher guidance scale value encourages the model to generate images closely linked to the text
1015
- `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
1016
- negative_prompt (`str` or `List[str]`, *optional*):
1017
- The prompt or prompts to guide what to not include in image generation. If not defined, you need to
1018
- pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
1019
- negative_prompt_2 (`str` or `List[str]`, *optional*):
1020
- The prompt or prompts to guide what to not include in image generation. This is sent to `tokenizer_2`
1021
- and `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders.
1022
- num_images_per_prompt (`int`, *optional*, defaults to 1):
1023
- The number of images to generate per prompt.
1024
- eta (`float`, *optional*, defaults to 0.0):
1025
- Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
1026
- to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
1027
- generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
1028
- A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
1029
- generation deterministic.
1030
- latents (`torch.FloatTensor`, *optional*):
1031
- Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
1032
- generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
1033
- tensor is generated by sampling using the supplied random `generator`.
1034
- prompt_embeds (`torch.FloatTensor`, *optional*):
1035
- Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
1036
- provided, text embeddings are generated from the `prompt` input argument.
1037
- negative_prompt_embeds (`torch.FloatTensor`, *optional*):
1038
- Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
1039
- not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
1040
- pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
1041
- Pre-generated pooled text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
1042
- not provided, pooled text embeddings are generated from `prompt` input argument.
1043
- negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
1044
- Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs (prompt
1045
- weighting). If not provided, pooled `negative_prompt_embeds` are generated from `negative_prompt` input
1046
- argument.
1047
- ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
1048
- output_type (`str`, *optional*, defaults to `"pil"`):
1049
- The output format of the generated image. Choose between `PIL.Image` or `np.array`.
1050
- return_dict (`bool`, *optional*, defaults to `True`):
1051
- Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
1052
- plain tuple.
1053
- cross_attention_kwargs (`dict`, *optional*):
1054
- A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
1055
- [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
1056
- controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
1057
- The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
1058
- to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
1059
- the corresponding scale as a list.
1060
- guess_mode (`bool`, *optional*, defaults to `False`):
1061
- The ControlNet encoder tries to recognize the content of the input image even if you remove all
1062
- prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended.
1063
- control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
1064
- The percentage of total steps at which the ControlNet starts applying.
1065
- control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
1066
- The percentage of total steps at which the ControlNet stops applying.
1067
- original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
1068
- If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
1069
- `original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
1070
- explained in section 2.2 of
1071
- [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
1072
- crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
1073
- `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
1074
- `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
1075
- `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
1076
- [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
1077
- target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
1078
- For most cases, `target_size` should be set to the desired height and width of the generated image. If
1079
- not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
1080
- section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
1081
- negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
1082
- To negatively condition the generation process based on a specific image resolution. Part of SDXL's
1083
- micro-conditioning as explained in section 2.2 of
1084
- [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
1085
- information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
1086
- negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
1087
- To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
1088
- micro-conditioning as explained in section 2.2 of
1089
- [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
1090
- information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
1091
- negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
1092
- To negatively condition the generation process based on a target image resolution. It should be as same
1093
- as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
1094
- [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
1095
- information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
1096
- clip_skip (`int`, *optional*):
1097
- Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
1098
- the output of the pre-final layer will be used for computing the prompt embeddings.
1099
- callback_on_step_end (`Callable`, *optional*):
1100
- A function that calls at the end of each denoising steps during the inference. The function is called
1101
- with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
1102
- callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
1103
- `callback_on_step_end_tensor_inputs`.
1104
- callback_on_step_end_tensor_inputs (`List`, *optional*):
1105
- The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
1106
- will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
1107
- `._callback_tensor_inputs` attribute of your pipeine class.
1108
-
1109
- Examples:
1110
-
1111
- Returns:
1112
- [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
1113
- If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
1114
- otherwise a `tuple` is returned containing the output images.
1115
- """
1116
-
1117
- callback = kwargs.pop("callback", None)
1118
- callback_steps = kwargs.pop("callback_steps", None)
1119
-
1120
- if callback is not None:
1121
- deprecate(
1122
- "callback",
1123
- "1.0.0",
1124
- "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
1125
- )
1126
- if callback_steps is not None:
1127
- deprecate(
1128
- "callback_steps",
1129
- "1.0.0",
1130
- "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
1131
- )
1132
-
1133
- controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
1134
-
1135
- # align format for control guidance
1136
- if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
1137
- control_guidance_start = len(control_guidance_end) * [control_guidance_start]
1138
- elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
1139
- control_guidance_end = len(control_guidance_start) * [control_guidance_end]
1140
- elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
1141
- mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
1142
- control_guidance_start, control_guidance_end = (
1143
- mult * [control_guidance_start],
1144
- mult * [control_guidance_end],
1145
- )
1146
-
1147
- # 1. Check inputs. Raise error if not correct
1148
- self.check_inputs(
1149
- prompt,
1150
- prompt_2,
1151
- image,
1152
- callback_steps,
1153
- negative_prompt,
1154
- negative_prompt_2,
1155
- prompt_embeds,
1156
- negative_prompt_embeds,
1157
- pooled_prompt_embeds,
1158
- negative_pooled_prompt_embeds,
1159
- controlnet_conditioning_scale,
1160
- control_guidance_start,
1161
- control_guidance_end,
1162
- callback_on_step_end_tensor_inputs,
1163
- )
1164
-
1165
- self._guidance_scale = guidance_scale
1166
- self._clip_skip = clip_skip
1167
- self._cross_attention_kwargs = cross_attention_kwargs
1168
-
1169
- # 2. Define call parameters
1170
- if prompt is not None and isinstance(prompt, str):
1171
- batch_size = 1
1172
- elif prompt is not None and isinstance(prompt, list):
1173
- batch_size = len(prompt)
1174
- else:
1175
- batch_size = prompt_embeds.shape[0]
1176
-
1177
- device = self._execution_device
1178
-
1179
- if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
1180
- controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)
1181
-
1182
- global_pool_conditions = (
1183
- controlnet.config.global_pool_conditions
1184
- if isinstance(controlnet, ControlNetModel)
1185
- else controlnet.nets[0].config.global_pool_conditions
1186
- )
1187
- guess_mode = guess_mode or global_pool_conditions
1188
-
1189
- # 3.1 Encode input prompt
1190
- text_encoder_lora_scale = (
1191
- self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
1192
- )
1193
- (
1194
- prompt_embeds,
1195
- negative_prompt_embeds,
1196
- pooled_prompt_embeds,
1197
- negative_pooled_prompt_embeds,
1198
- ) = self.encode_prompt(
1199
- prompt,
1200
- prompt_2,
1201
- device,
1202
- num_images_per_prompt,
1203
- self.do_classifier_free_guidance,
1204
- negative_prompt,
1205
- negative_prompt_2,
1206
- prompt_embeds=prompt_embeds,
1207
- negative_prompt_embeds=negative_prompt_embeds,
1208
- pooled_prompt_embeds=pooled_prompt_embeds,
1209
- negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
1210
- lora_scale=text_encoder_lora_scale,
1211
- clip_skip=self.clip_skip,
1212
- )
1213
-
1214
- # 3.2 Encode ip_adapter_image
1215
- if ip_adapter_image is not None:
1216
- image_embeds = self.prepare_ip_adapter_image_embeds(
1217
- ip_adapter_image, device, batch_size * num_images_per_prompt
1218
- )
1219
-
1220
- # 4. Prepare image
1221
- if isinstance(controlnet, ControlNetModel):
1222
- image = self.prepare_image(
1223
- image=image,
1224
- width=width,
1225
- height=height,
1226
- batch_size=batch_size * num_images_per_prompt,
1227
- num_images_per_prompt=num_images_per_prompt,
1228
- device=device,
1229
- dtype=controlnet.dtype,
1230
- do_classifier_free_guidance=self.do_classifier_free_guidance,
1231
- guess_mode=guess_mode,
1232
- )
1233
- height, width = image.shape[-2:]
1234
- height, width = height*self.vae_scale_factor, width*self.vae_scale_factor # for vae controlnet
1235
- elif isinstance(controlnet, MultiControlNetModel):
1236
- images = []
1237
-
1238
- for image_ in image:
1239
- image_ = self.prepare_image(
1240
- image=image_,
1241
- width=width,
1242
- height=height,
1243
- batch_size=batch_size * num_images_per_prompt,
1244
- num_images_per_prompt=num_images_per_prompt,
1245
- device=device,
1246
- dtype=controlnet.dtype,
1247
- do_classifier_free_guidance=self.do_classifier_free_guidance,
1248
- guess_mode=guess_mode,
1249
- )
1250
-
1251
- images.append(image_)
1252
-
1253
- image = images
1254
- height, width = image[0].shape[-2:]
1255
- else:
1256
- assert False
1257
-
1258
- # 5. Prepare timesteps
1259
- self.scheduler.set_timesteps(num_inference_steps, device=device)
1260
- timesteps = self.scheduler.timesteps
1261
- self._num_timesteps = len(timesteps)
1262
-
1263
- # 6. Prepare latent variables
1264
- num_channels_latents = self.unet.config.in_channels
1265
- latents = self.prepare_latents(
1266
- batch_size * num_images_per_prompt,
1267
- num_channels_latents,
1268
- height,
1269
- width,
1270
- prompt_embeds.dtype,
1271
- device,
1272
- generator,
1273
- latents,
1274
- )
1275
-
1276
- # 6.5 Optionally get Guidance Scale Embedding
1277
- timestep_cond = None
1278
- if self.unet.config.time_cond_proj_dim is not None:
1279
- guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
1280
- timestep_cond = self.get_guidance_scale_embedding(
1281
- guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
1282
- ).to(device=device, dtype=latents.dtype)
1283
-
1284
- # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
1285
- extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
1286
-
1287
- # 7.1 Create tensor stating which controlnets to keep
1288
- controlnet_keep = []
1289
- for i in range(len(timesteps)):
1290
- keeps = [
1291
- 1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
1292
- for s, e in zip(control_guidance_start, control_guidance_end)
1293
- ]
1294
- controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)
1295
-
1296
- # 7.2 Prepare added time ids & embeddings
1297
- if isinstance(image, list):
1298
- original_size = original_size or image[0].shape[-2:]
1299
- else:
1300
- original_size = original_size or image.shape[-2:]
1301
- target_size = target_size or (height, width)
1302
-
1303
- add_text_embeds = pooled_prompt_embeds
1304
- if self.text_encoder_2 is None:
1305
- text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
1306
- else:
1307
- text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
1308
-
1309
- add_time_ids = self._get_add_time_ids(
1310
- original_size,
1311
- crops_coords_top_left,
1312
- target_size,
1313
- dtype=prompt_embeds.dtype,
1314
- text_encoder_projection_dim=text_encoder_projection_dim,
1315
- )
1316
-
1317
- if negative_original_size is not None and negative_target_size is not None:
1318
- negative_add_time_ids = self._get_add_time_ids(
1319
- negative_original_size,
1320
- negative_crops_coords_top_left,
1321
- negative_target_size,
1322
- dtype=prompt_embeds.dtype,
1323
- text_encoder_projection_dim=text_encoder_projection_dim,
1324
- )
1325
- else:
1326
- negative_add_time_ids = add_time_ids
1327
-
1328
- if self.do_classifier_free_guidance:
1329
- prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
1330
- add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
1331
- add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
1332
-
1333
- prompt_embeds = prompt_embeds.to(device)
1334
- add_text_embeds = add_text_embeds.to(device)
1335
- add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
1336
-
1337
- # 8. Denoising loop
1338
- num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
1339
- is_unet_compiled = is_compiled_module(self.unet)
1340
- is_controlnet_compiled = is_compiled_module(self.controlnet)
1341
- is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1")
1342
- with self.progress_bar(total=num_inference_steps) as progress_bar:
1343
- for i, t in enumerate(timesteps):
1344
- # Relevant thread:
1345
- # https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428
1346
- if (is_unet_compiled and is_controlnet_compiled) and is_torch_higher_equal_2_1:
1347
- torch._inductor.cudagraph_mark_step_begin()
1348
- # expand the latents if we are doing classifier free guidance
1349
- latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
1350
- latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
1351
-
1352
- added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
1353
-
1354
- # controlnet(s) inference
1355
- if guess_mode and self.do_classifier_free_guidance:
1356
- # Infer ControlNet only for the conditional batch.
1357
- control_model_input = latents
1358
- control_model_input = self.scheduler.scale_model_input(control_model_input, t)
1359
- controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
1360
- controlnet_added_cond_kwargs = {
1361
- "text_embeds": add_text_embeds.chunk(2)[1],
1362
- "time_ids": add_time_ids.chunk(2)[1],
1363
- }
1364
- else:
1365
- control_model_input = latent_model_input
1366
- controlnet_prompt_embeds = prompt_embeds
1367
- controlnet_added_cond_kwargs = added_cond_kwargs
1368
-
1369
- if isinstance(controlnet_keep[i], list):
1370
- cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
1371
- else:
1372
- controlnet_cond_scale = controlnet_conditioning_scale
1373
- if isinstance(controlnet_cond_scale, list):
1374
- controlnet_cond_scale = controlnet_cond_scale[0]
1375
- cond_scale = controlnet_cond_scale * controlnet_keep[i]
1376
-
1377
- down_block_res_samples, mid_block_res_sample = self.controlnet(
1378
- control_model_input,
1379
- t,
1380
- encoder_hidden_states=controlnet_prompt_embeds,
1381
- controlnet_cond=image,
1382
- conditioning_scale=cond_scale,
1383
- guess_mode=guess_mode,
1384
- added_cond_kwargs=controlnet_added_cond_kwargs,
1385
- return_dict=False,
1386
- )
1387
-
1388
- if guess_mode and self.do_classifier_free_guidance:
1389
- # Infered ControlNet only for the conditional batch.
1390
- # To apply the output of ControlNet to both the unconditional and conditional batches,
1391
- # add 0 to the unconditional batch to keep it unchanged.
1392
- down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
1393
- mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
1394
-
1395
- if ip_adapter_image is not None:
1396
- added_cond_kwargs["image_embeds"] = image_embeds
1397
-
1398
- # predict the noise residual
1399
- noise_pred = self.unet(
1400
- latent_model_input,
1401
- t,
1402
- encoder_hidden_states=prompt_embeds,
1403
- timestep_cond=timestep_cond,
1404
- cross_attention_kwargs=self.cross_attention_kwargs,
1405
- down_block_additional_residuals=down_block_res_samples,
1406
- mid_block_additional_residual=mid_block_res_sample,
1407
- added_cond_kwargs=added_cond_kwargs,
1408
- return_dict=False,
1409
- )[0]
1410
-
1411
- # perform guidance
1412
- if self.do_classifier_free_guidance:
1413
- noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
1414
- noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
1415
-
1416
- # compute the previous noisy sample x_t -> x_t-1
1417
- latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
1418
-
1419
- if callback_on_step_end is not None:
1420
- callback_kwargs = {}
1421
- for k in callback_on_step_end_tensor_inputs:
1422
- callback_kwargs[k] = locals()[k]
1423
- callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
1424
-
1425
- latents = callback_outputs.pop("latents", latents)
1426
- prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
1427
- negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
1428
-
1429
- # call the callback, if provided
1430
- if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
1431
- progress_bar.update()
1432
- if callback is not None and i % callback_steps == 0:
1433
- step_idx = i // getattr(self.scheduler, "order", 1)
1434
- callback(step_idx, t, latents)
1435
-
1436
- if not output_type == "latent":
1437
- # make sure the VAE is in float32 mode, as it overflows in float16
1438
- needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
1439
-
1440
- if needs_upcasting:
1441
- self.upcast_vae()
1442
- latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
1443
-
1444
- image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
1445
-
1446
- # cast back to fp16 if needed
1447
- if needs_upcasting:
1448
- self.vae.to(dtype=torch.float16)
1449
- else:
1450
- image = latents
1451
-
1452
- if not output_type == "latent":
1453
- # apply watermark if available
1454
- if self.watermark is not None:
1455
- image = self.watermark.apply_watermark(image)
1456
-
1457
- image = self.image_processor.postprocess(image, output_type=output_type)
1458
-
1459
- # Offload all models
1460
- self.maybe_free_model_hooks()
1461
-
1462
- if not return_dict:
1463
- return (image,)
1464
-
1465
- return StableDiffusionXLPipelineOutput(images=image)