Spaces:
Running
Running
Delete pipeline_controlnet_sd_xl.py
Browse files- pipeline_controlnet_sd_xl.py +0 -1465
pipeline_controlnet_sd_xl.py
DELETED
@@ -1,1465 +0,0 @@
|
|
1 |
-
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
|
15 |
-
|
16 |
-
import inspect
|
17 |
-
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
18 |
-
|
19 |
-
import numpy as np
|
20 |
-
import PIL.Image
|
21 |
-
import torch
|
22 |
-
import torch.nn.functional as F
|
23 |
-
from transformers import (
|
24 |
-
CLIPImageProcessor,
|
25 |
-
CLIPTextModel,
|
26 |
-
CLIPTextModelWithProjection,
|
27 |
-
CLIPTokenizer,
|
28 |
-
CLIPVisionModelWithProjection,
|
29 |
-
)
|
30 |
-
|
31 |
-
from diffusers.utils.import_utils import is_invisible_watermark_available
|
32 |
-
|
33 |
-
from image_processor import PipelineImageInput, VaeImageProcessor
|
34 |
-
from diffusers.loaders import (
|
35 |
-
FromSingleFileMixin,
|
36 |
-
IPAdapterMixin,
|
37 |
-
StableDiffusionXLLoraLoaderMixin,
|
38 |
-
TextualInversionLoaderMixin,
|
39 |
-
)
|
40 |
-
from controlnet import ControlNetModel
|
41 |
-
# from diffusers.models import AutoencoderKL, ControlNetModel, ImageProjection, UNet2DConditionModel
|
42 |
-
from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
|
43 |
-
from diffusers.models.attention_processor import (
|
44 |
-
AttnProcessor2_0,
|
45 |
-
LoRAAttnProcessor2_0,
|
46 |
-
LoRAXFormersAttnProcessor,
|
47 |
-
XFormersAttnProcessor,
|
48 |
-
)
|
49 |
-
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
50 |
-
from diffusers.schedulers import KarrasDiffusionSchedulers
|
51 |
-
from diffusers.utils import (
|
52 |
-
USE_PEFT_BACKEND,
|
53 |
-
deprecate,
|
54 |
-
logging,
|
55 |
-
replace_example_docstring,
|
56 |
-
scale_lora_layers,
|
57 |
-
unscale_lora_layers,
|
58 |
-
)
|
59 |
-
from diffusers.utils.torch_utils import is_compiled_module, is_torch_version, randn_tensor
|
60 |
-
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
61 |
-
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
|
62 |
-
|
63 |
-
|
64 |
-
if is_invisible_watermark_available():
|
65 |
-
from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker
|
66 |
-
|
67 |
-
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
|
68 |
-
|
69 |
-
|
70 |
-
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
71 |
-
|
72 |
-
|
73 |
-
EXAMPLE_DOC_STRING = """
|
74 |
-
Examples:
|
75 |
-
```py
|
76 |
-
>>> # !pip install opencv-python transformers accelerate
|
77 |
-
>>> from diffusers import StableDiffusionXLControlNetPipeline, ControlNetModel, AutoencoderKL
|
78 |
-
>>> from diffusers.utils import load_image
|
79 |
-
>>> import numpy as np
|
80 |
-
>>> import torch
|
81 |
-
|
82 |
-
>>> import cv2
|
83 |
-
>>> from PIL import Image
|
84 |
-
|
85 |
-
>>> prompt = "aerial view, a futuristic research complex in a bright foggy jungle, hard lighting"
|
86 |
-
>>> negative_prompt = "low quality, bad quality, sketches"
|
87 |
-
|
88 |
-
>>> # download an image
|
89 |
-
>>> image = load_image(
|
90 |
-
... "https://hf.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png"
|
91 |
-
... )
|
92 |
-
|
93 |
-
>>> # initialize the models and pipeline
|
94 |
-
>>> controlnet_conditioning_scale = 0.5 # recommended for good generalization
|
95 |
-
>>> controlnet = ControlNetModel.from_pretrained(
|
96 |
-
... "diffusers/controlnet-canny-sdxl-1.0", torch_dtype=torch.float16
|
97 |
-
... )
|
98 |
-
>>> vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
99 |
-
>>> pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
100 |
-
... "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, vae=vae, torch_dtype=torch.float16
|
101 |
-
... )
|
102 |
-
>>> pipe.enable_model_cpu_offload()
|
103 |
-
|
104 |
-
>>> # get canny image
|
105 |
-
>>> image = np.array(image)
|
106 |
-
>>> image = cv2.Canny(image, 100, 200)
|
107 |
-
>>> image = image[:, :, None]
|
108 |
-
>>> image = np.concatenate([image, image, image], axis=2)
|
109 |
-
>>> canny_image = Image.fromarray(image)
|
110 |
-
|
111 |
-
>>> # generate image
|
112 |
-
>>> image = pipe(
|
113 |
-
... prompt, controlnet_conditioning_scale=controlnet_conditioning_scale, image=canny_image
|
114 |
-
... ).images[0]
|
115 |
-
```
|
116 |
-
"""
|
117 |
-
|
118 |
-
|
119 |
-
class StableDiffusionXLControlNetPipeline(
|
120 |
-
DiffusionPipeline,
|
121 |
-
TextualInversionLoaderMixin,
|
122 |
-
StableDiffusionXLLoraLoaderMixin,
|
123 |
-
IPAdapterMixin,
|
124 |
-
FromSingleFileMixin,
|
125 |
-
):
|
126 |
-
r"""
|
127 |
-
Pipeline for text-to-image generation using Stable Diffusion XL with ControlNet guidance.
|
128 |
-
|
129 |
-
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
|
130 |
-
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
131 |
-
|
132 |
-
The pipeline also inherits the following loading methods:
|
133 |
-
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
134 |
-
- [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
135 |
-
- [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
136 |
-
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
137 |
-
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
138 |
-
|
139 |
-
Args:
|
140 |
-
vae ([`AutoencoderKL`]):
|
141 |
-
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
|
142 |
-
text_encoder ([`~transformers.CLIPTextModel`]):
|
143 |
-
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
|
144 |
-
text_encoder_2 ([`~transformers.CLIPTextModelWithProjection`]):
|
145 |
-
Second frozen text-encoder
|
146 |
-
([laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)).
|
147 |
-
tokenizer ([`~transformers.CLIPTokenizer`]):
|
148 |
-
A `CLIPTokenizer` to tokenize text.
|
149 |
-
tokenizer_2 ([`~transformers.CLIPTokenizer`]):
|
150 |
-
A `CLIPTokenizer` to tokenize text.
|
151 |
-
unet ([`UNet2DConditionModel`]):
|
152 |
-
A `UNet2DConditionModel` to denoise the encoded image latents.
|
153 |
-
controlnet ([`ControlNetModel`] or `List[ControlNetModel]`):
|
154 |
-
Provides additional conditioning to the `unet` during the denoising process. If you set multiple
|
155 |
-
ControlNets as a list, the outputs from each ControlNet are added together to create one combined
|
156 |
-
additional conditioning.
|
157 |
-
scheduler ([`SchedulerMixin`]):
|
158 |
-
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
159 |
-
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
160 |
-
force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`):
|
161 |
-
Whether the negative prompt embeddings should always be set to 0. Also see the config of
|
162 |
-
`stabilityai/stable-diffusion-xl-base-1-0`.
|
163 |
-
add_watermarker (`bool`, *optional*):
|
164 |
-
Whether to use the [invisible_watermark](https://github.com/ShieldMnt/invisible-watermark/) library to
|
165 |
-
watermark output images. If not defined, it defaults to `True` if the package is installed; otherwise no
|
166 |
-
watermarker is used.
|
167 |
-
"""
|
168 |
-
|
169 |
-
# leave controlnet out on purpose because it iterates with unet
|
170 |
-
model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->unet->vae"
|
171 |
-
_optional_components = [
|
172 |
-
"tokenizer",
|
173 |
-
"tokenizer_2",
|
174 |
-
"text_encoder",
|
175 |
-
"text_encoder_2",
|
176 |
-
"feature_extractor",
|
177 |
-
"image_encoder",
|
178 |
-
]
|
179 |
-
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
|
180 |
-
|
181 |
-
def __init__(
|
182 |
-
self,
|
183 |
-
vae: AutoencoderKL,
|
184 |
-
text_encoder: CLIPTextModel,
|
185 |
-
text_encoder_2: CLIPTextModelWithProjection,
|
186 |
-
tokenizer: CLIPTokenizer,
|
187 |
-
tokenizer_2: CLIPTokenizer,
|
188 |
-
unet: UNet2DConditionModel,
|
189 |
-
controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel],
|
190 |
-
scheduler: KarrasDiffusionSchedulers,
|
191 |
-
force_zeros_for_empty_prompt: bool = True,
|
192 |
-
add_watermarker: Optional[bool] = None,
|
193 |
-
feature_extractor: CLIPImageProcessor = None,
|
194 |
-
image_encoder: CLIPVisionModelWithProjection = None,
|
195 |
-
):
|
196 |
-
super().__init__()
|
197 |
-
|
198 |
-
if isinstance(controlnet, (list, tuple)):
|
199 |
-
controlnet = MultiControlNetModel(controlnet)
|
200 |
-
|
201 |
-
self.register_modules(
|
202 |
-
vae=vae,
|
203 |
-
text_encoder=text_encoder,
|
204 |
-
text_encoder_2=text_encoder_2,
|
205 |
-
tokenizer=tokenizer,
|
206 |
-
tokenizer_2=tokenizer_2,
|
207 |
-
unet=unet,
|
208 |
-
controlnet=controlnet,
|
209 |
-
scheduler=scheduler,
|
210 |
-
feature_extractor=feature_extractor,
|
211 |
-
image_encoder=image_encoder,
|
212 |
-
)
|
213 |
-
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
214 |
-
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True)
|
215 |
-
self.control_image_processor = VaeImageProcessor(
|
216 |
-
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
|
217 |
-
)
|
218 |
-
add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available()
|
219 |
-
|
220 |
-
if add_watermarker:
|
221 |
-
self.watermark = StableDiffusionXLWatermarker()
|
222 |
-
else:
|
223 |
-
self.watermark = None
|
224 |
-
|
225 |
-
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
|
226 |
-
|
227 |
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
|
228 |
-
def enable_vae_slicing(self):
|
229 |
-
r"""
|
230 |
-
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
231 |
-
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
232 |
-
"""
|
233 |
-
self.vae.enable_slicing()
|
234 |
-
|
235 |
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
|
236 |
-
def disable_vae_slicing(self):
|
237 |
-
r"""
|
238 |
-
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
|
239 |
-
computing decoding in one step.
|
240 |
-
"""
|
241 |
-
self.vae.disable_slicing()
|
242 |
-
|
243 |
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling
|
244 |
-
def enable_vae_tiling(self):
|
245 |
-
r"""
|
246 |
-
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
247 |
-
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
248 |
-
processing larger images.
|
249 |
-
"""
|
250 |
-
self.vae.enable_tiling()
|
251 |
-
|
252 |
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
|
253 |
-
def disable_vae_tiling(self):
|
254 |
-
r"""
|
255 |
-
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
|
256 |
-
computing decoding in one step.
|
257 |
-
"""
|
258 |
-
self.vae.disable_tiling()
|
259 |
-
|
260 |
-
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt
|
261 |
-
def encode_prompt(
|
262 |
-
self,
|
263 |
-
prompt: str,
|
264 |
-
prompt_2: Optional[str] = None,
|
265 |
-
device: Optional[torch.device] = None,
|
266 |
-
num_images_per_prompt: int = 1,
|
267 |
-
do_classifier_free_guidance: bool = True,
|
268 |
-
negative_prompt: Optional[str] = None,
|
269 |
-
negative_prompt_2: Optional[str] = None,
|
270 |
-
prompt_embeds: Optional[torch.FloatTensor] = None,
|
271 |
-
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
272 |
-
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
273 |
-
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
274 |
-
lora_scale: Optional[float] = None,
|
275 |
-
clip_skip: Optional[int] = None,
|
276 |
-
):
|
277 |
-
r"""
|
278 |
-
Encodes the prompt into text encoder hidden states.
|
279 |
-
|
280 |
-
Args:
|
281 |
-
prompt (`str` or `List[str]`, *optional*):
|
282 |
-
prompt to be encoded
|
283 |
-
prompt_2 (`str` or `List[str]`, *optional*):
|
284 |
-
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
285 |
-
used in both text-encoders
|
286 |
-
device: (`torch.device`):
|
287 |
-
torch device
|
288 |
-
num_images_per_prompt (`int`):
|
289 |
-
number of images that should be generated per prompt
|
290 |
-
do_classifier_free_guidance (`bool`):
|
291 |
-
whether to use classifier free guidance or not
|
292 |
-
negative_prompt (`str` or `List[str]`, *optional*):
|
293 |
-
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
294 |
-
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
295 |
-
less than `1`).
|
296 |
-
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
297 |
-
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
298 |
-
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
299 |
-
prompt_embeds (`torch.FloatTensor`, *optional*):
|
300 |
-
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
301 |
-
provided, text embeddings will be generated from `prompt` input argument.
|
302 |
-
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
303 |
-
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
304 |
-
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
305 |
-
argument.
|
306 |
-
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
307 |
-
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
308 |
-
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
309 |
-
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
310 |
-
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
311 |
-
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
312 |
-
input argument.
|
313 |
-
lora_scale (`float`, *optional*):
|
314 |
-
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
315 |
-
clip_skip (`int`, *optional*):
|
316 |
-
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
317 |
-
the output of the pre-final layer will be used for computing the prompt embeddings.
|
318 |
-
"""
|
319 |
-
device = device or self._execution_device
|
320 |
-
|
321 |
-
# set lora scale so that monkey patched LoRA
|
322 |
-
# function of text encoder can correctly access it
|
323 |
-
if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin):
|
324 |
-
self._lora_scale = lora_scale
|
325 |
-
|
326 |
-
# dynamically adjust the LoRA scale
|
327 |
-
if self.text_encoder is not None:
|
328 |
-
if not USE_PEFT_BACKEND:
|
329 |
-
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
|
330 |
-
else:
|
331 |
-
scale_lora_layers(self.text_encoder, lora_scale)
|
332 |
-
|
333 |
-
if self.text_encoder_2 is not None:
|
334 |
-
if not USE_PEFT_BACKEND:
|
335 |
-
adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale)
|
336 |
-
else:
|
337 |
-
scale_lora_layers(self.text_encoder_2, lora_scale)
|
338 |
-
|
339 |
-
prompt = [prompt] if isinstance(prompt, str) else prompt
|
340 |
-
|
341 |
-
if prompt is not None:
|
342 |
-
batch_size = len(prompt)
|
343 |
-
else:
|
344 |
-
batch_size = prompt_embeds.shape[0]
|
345 |
-
|
346 |
-
# Define tokenizers and text encoders
|
347 |
-
tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
|
348 |
-
text_encoders = (
|
349 |
-
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
|
350 |
-
)
|
351 |
-
|
352 |
-
if prompt_embeds is None:
|
353 |
-
prompt_2 = prompt_2 or prompt
|
354 |
-
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
355 |
-
|
356 |
-
# textual inversion: procecss multi-vector tokens if necessary
|
357 |
-
prompt_embeds_list = []
|
358 |
-
prompts = [prompt, prompt_2]
|
359 |
-
for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
|
360 |
-
if isinstance(self, TextualInversionLoaderMixin):
|
361 |
-
prompt = self.maybe_convert_prompt(prompt, tokenizer)
|
362 |
-
|
363 |
-
text_inputs = tokenizer(
|
364 |
-
prompt,
|
365 |
-
padding="max_length",
|
366 |
-
max_length=tokenizer.model_max_length,
|
367 |
-
truncation=True,
|
368 |
-
return_tensors="pt",
|
369 |
-
)
|
370 |
-
|
371 |
-
text_input_ids = text_inputs.input_ids
|
372 |
-
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
373 |
-
|
374 |
-
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
375 |
-
text_input_ids, untruncated_ids
|
376 |
-
):
|
377 |
-
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
|
378 |
-
logger.warning(
|
379 |
-
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
380 |
-
f" {tokenizer.model_max_length} tokens: {removed_text}"
|
381 |
-
)
|
382 |
-
|
383 |
-
prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
|
384 |
-
|
385 |
-
# We are only ALWAYS interested in the pooled output of the final text encoder
|
386 |
-
pooled_prompt_embeds = prompt_embeds[0]
|
387 |
-
if clip_skip is None:
|
388 |
-
prompt_embeds = prompt_embeds.hidden_states[-2]
|
389 |
-
else:
|
390 |
-
# "2" because SDXL always indexes from the penultimate layer.
|
391 |
-
prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)]
|
392 |
-
|
393 |
-
prompt_embeds_list.append(prompt_embeds)
|
394 |
-
|
395 |
-
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
|
396 |
-
|
397 |
-
# get unconditional embeddings for classifier free guidance
|
398 |
-
zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
|
399 |
-
if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
|
400 |
-
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
|
401 |
-
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
|
402 |
-
elif do_classifier_free_guidance and negative_prompt_embeds is None:
|
403 |
-
negative_prompt = negative_prompt or ""
|
404 |
-
negative_prompt_2 = negative_prompt_2 or negative_prompt
|
405 |
-
|
406 |
-
# normalize str to list
|
407 |
-
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
|
408 |
-
negative_prompt_2 = (
|
409 |
-
batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
|
410 |
-
)
|
411 |
-
|
412 |
-
uncond_tokens: List[str]
|
413 |
-
if prompt is not None and type(prompt) is not type(negative_prompt):
|
414 |
-
raise TypeError(
|
415 |
-
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
416 |
-
f" {type(prompt)}."
|
417 |
-
)
|
418 |
-
elif batch_size != len(negative_prompt):
|
419 |
-
raise ValueError(
|
420 |
-
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
421 |
-
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
422 |
-
" the batch size of `prompt`."
|
423 |
-
)
|
424 |
-
else:
|
425 |
-
uncond_tokens = [negative_prompt, negative_prompt_2]
|
426 |
-
|
427 |
-
negative_prompt_embeds_list = []
|
428 |
-
for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
|
429 |
-
if isinstance(self, TextualInversionLoaderMixin):
|
430 |
-
negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer)
|
431 |
-
|
432 |
-
max_length = prompt_embeds.shape[1]
|
433 |
-
uncond_input = tokenizer(
|
434 |
-
negative_prompt,
|
435 |
-
padding="max_length",
|
436 |
-
max_length=max_length,
|
437 |
-
truncation=True,
|
438 |
-
return_tensors="pt",
|
439 |
-
)
|
440 |
-
|
441 |
-
negative_prompt_embeds = text_encoder(
|
442 |
-
uncond_input.input_ids.to(device),
|
443 |
-
output_hidden_states=True,
|
444 |
-
)
|
445 |
-
# We are only ALWAYS interested in the pooled output of the final text encoder
|
446 |
-
negative_pooled_prompt_embeds = negative_prompt_embeds[0]
|
447 |
-
negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
|
448 |
-
|
449 |
-
negative_prompt_embeds_list.append(negative_prompt_embeds)
|
450 |
-
|
451 |
-
negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
|
452 |
-
|
453 |
-
if self.text_encoder_2 is not None:
|
454 |
-
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
455 |
-
else:
|
456 |
-
prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device)
|
457 |
-
|
458 |
-
bs_embed, seq_len, _ = prompt_embeds.shape
|
459 |
-
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
460 |
-
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
461 |
-
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
462 |
-
|
463 |
-
if do_classifier_free_guidance:
|
464 |
-
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
465 |
-
seq_len = negative_prompt_embeds.shape[1]
|
466 |
-
|
467 |
-
if self.text_encoder_2 is not None:
|
468 |
-
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
469 |
-
else:
|
470 |
-
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device)
|
471 |
-
|
472 |
-
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
473 |
-
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
474 |
-
|
475 |
-
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
476 |
-
bs_embed * num_images_per_prompt, -1
|
477 |
-
)
|
478 |
-
if do_classifier_free_guidance:
|
479 |
-
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
480 |
-
bs_embed * num_images_per_prompt, -1
|
481 |
-
)
|
482 |
-
|
483 |
-
if self.text_encoder is not None:
|
484 |
-
if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
|
485 |
-
# Retrieve the original scale by scaling back the LoRA layers
|
486 |
-
unscale_lora_layers(self.text_encoder, lora_scale)
|
487 |
-
|
488 |
-
if self.text_encoder_2 is not None:
|
489 |
-
if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
|
490 |
-
# Retrieve the original scale by scaling back the LoRA layers
|
491 |
-
unscale_lora_layers(self.text_encoder_2, lora_scale)
|
492 |
-
|
493 |
-
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
|
494 |
-
|
495 |
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
|
496 |
-
def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
|
497 |
-
dtype = next(self.image_encoder.parameters()).dtype
|
498 |
-
|
499 |
-
if not isinstance(image, torch.Tensor):
|
500 |
-
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
501 |
-
|
502 |
-
image = image.to(device=device, dtype=dtype)
|
503 |
-
if output_hidden_states:
|
504 |
-
image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
|
505 |
-
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
|
506 |
-
uncond_image_enc_hidden_states = self.image_encoder(
|
507 |
-
torch.zeros_like(image), output_hidden_states=True
|
508 |
-
).hidden_states[-2]
|
509 |
-
uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
|
510 |
-
num_images_per_prompt, dim=0
|
511 |
-
)
|
512 |
-
return image_enc_hidden_states, uncond_image_enc_hidden_states
|
513 |
-
else:
|
514 |
-
image_embeds = self.image_encoder(image).image_embeds
|
515 |
-
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
516 |
-
uncond_image_embeds = torch.zeros_like(image_embeds)
|
517 |
-
|
518 |
-
return image_embeds, uncond_image_embeds
|
519 |
-
|
520 |
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
|
521 |
-
def prepare_ip_adapter_image_embeds(self, ip_adapter_image, device, num_images_per_prompt):
|
522 |
-
if not isinstance(ip_adapter_image, list):
|
523 |
-
ip_adapter_image = [ip_adapter_image]
|
524 |
-
|
525 |
-
if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
|
526 |
-
raise ValueError(
|
527 |
-
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
|
528 |
-
)
|
529 |
-
|
530 |
-
image_embeds = []
|
531 |
-
for single_ip_adapter_image, image_proj_layer in zip(
|
532 |
-
ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
|
533 |
-
):
|
534 |
-
output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
|
535 |
-
single_image_embeds, single_negative_image_embeds = self.encode_image(
|
536 |
-
single_ip_adapter_image, device, 1, output_hidden_state
|
537 |
-
)
|
538 |
-
single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
|
539 |
-
single_negative_image_embeds = torch.stack([single_negative_image_embeds] * num_images_per_prompt, dim=0)
|
540 |
-
|
541 |
-
if self.do_classifier_free_guidance:
|
542 |
-
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
|
543 |
-
single_image_embeds = single_image_embeds.to(device)
|
544 |
-
|
545 |
-
image_embeds.append(single_image_embeds)
|
546 |
-
|
547 |
-
return image_embeds
|
548 |
-
|
549 |
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
550 |
-
def prepare_extra_step_kwargs(self, generator, eta):
|
551 |
-
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
552 |
-
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
553 |
-
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
554 |
-
# and should be between [0, 1]
|
555 |
-
|
556 |
-
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
557 |
-
extra_step_kwargs = {}
|
558 |
-
if accepts_eta:
|
559 |
-
extra_step_kwargs["eta"] = eta
|
560 |
-
|
561 |
-
# check if the scheduler accepts generator
|
562 |
-
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
563 |
-
if accepts_generator:
|
564 |
-
extra_step_kwargs["generator"] = generator
|
565 |
-
return extra_step_kwargs
|
566 |
-
|
567 |
-
def check_inputs(
|
568 |
-
self,
|
569 |
-
prompt,
|
570 |
-
prompt_2,
|
571 |
-
image,
|
572 |
-
callback_steps,
|
573 |
-
negative_prompt=None,
|
574 |
-
negative_prompt_2=None,
|
575 |
-
prompt_embeds=None,
|
576 |
-
negative_prompt_embeds=None,
|
577 |
-
pooled_prompt_embeds=None,
|
578 |
-
negative_pooled_prompt_embeds=None,
|
579 |
-
controlnet_conditioning_scale=1.0,
|
580 |
-
control_guidance_start=0.0,
|
581 |
-
control_guidance_end=1.0,
|
582 |
-
callback_on_step_end_tensor_inputs=None,
|
583 |
-
):
|
584 |
-
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
|
585 |
-
raise ValueError(
|
586 |
-
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
587 |
-
f" {type(callback_steps)}."
|
588 |
-
)
|
589 |
-
|
590 |
-
if callback_on_step_end_tensor_inputs is not None and not all(
|
591 |
-
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
592 |
-
):
|
593 |
-
raise ValueError(
|
594 |
-
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
595 |
-
)
|
596 |
-
|
597 |
-
if prompt is not None and prompt_embeds is not None:
|
598 |
-
raise ValueError(
|
599 |
-
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
600 |
-
" only forward one of the two."
|
601 |
-
)
|
602 |
-
elif prompt_2 is not None and prompt_embeds is not None:
|
603 |
-
raise ValueError(
|
604 |
-
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
605 |
-
" only forward one of the two."
|
606 |
-
)
|
607 |
-
elif prompt is None and prompt_embeds is None:
|
608 |
-
raise ValueError(
|
609 |
-
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
610 |
-
)
|
611 |
-
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
612 |
-
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
613 |
-
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
|
614 |
-
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
|
615 |
-
|
616 |
-
if negative_prompt is not None and negative_prompt_embeds is not None:
|
617 |
-
raise ValueError(
|
618 |
-
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
619 |
-
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
620 |
-
)
|
621 |
-
elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
|
622 |
-
raise ValueError(
|
623 |
-
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
|
624 |
-
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
625 |
-
)
|
626 |
-
|
627 |
-
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
628 |
-
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
629 |
-
raise ValueError(
|
630 |
-
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
631 |
-
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
632 |
-
f" {negative_prompt_embeds.shape}."
|
633 |
-
)
|
634 |
-
|
635 |
-
if prompt_embeds is not None and pooled_prompt_embeds is None:
|
636 |
-
raise ValueError(
|
637 |
-
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
|
638 |
-
)
|
639 |
-
|
640 |
-
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
|
641 |
-
raise ValueError(
|
642 |
-
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
|
643 |
-
)
|
644 |
-
|
645 |
-
# `prompt` needs more sophisticated handling when there are multiple
|
646 |
-
# conditionings.
|
647 |
-
if isinstance(self.controlnet, MultiControlNetModel):
|
648 |
-
if isinstance(prompt, list):
|
649 |
-
logger.warning(
|
650 |
-
f"You have {len(self.controlnet.nets)} ControlNets and you have passed {len(prompt)}"
|
651 |
-
" prompts. The conditionings will be fixed across the prompts."
|
652 |
-
)
|
653 |
-
|
654 |
-
# Check `image`
|
655 |
-
is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
|
656 |
-
self.controlnet, torch._dynamo.eval_frame.OptimizedModule
|
657 |
-
)
|
658 |
-
if (
|
659 |
-
isinstance(self.controlnet, ControlNetModel)
|
660 |
-
or is_compiled
|
661 |
-
and isinstance(self.controlnet._orig_mod, ControlNetModel)
|
662 |
-
):
|
663 |
-
self.check_image(image, prompt, prompt_embeds)
|
664 |
-
elif (
|
665 |
-
isinstance(self.controlnet, MultiControlNetModel)
|
666 |
-
or is_compiled
|
667 |
-
and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
|
668 |
-
):
|
669 |
-
if not isinstance(image, list):
|
670 |
-
raise TypeError("For multiple controlnets: `image` must be type `list`")
|
671 |
-
|
672 |
-
# When `image` is a nested list:
|
673 |
-
# (e.g. [[canny_image_1, pose_image_1], [canny_image_2, pose_image_2]])
|
674 |
-
elif any(isinstance(i, list) for i in image):
|
675 |
-
raise ValueError("A single batch of multiple conditionings are supported at the moment.")
|
676 |
-
elif len(image) != len(self.controlnet.nets):
|
677 |
-
raise ValueError(
|
678 |
-
f"For multiple controlnets: `image` must have the same length as the number of controlnets, but got {len(image)} images and {len(self.controlnet.nets)} ControlNets."
|
679 |
-
)
|
680 |
-
|
681 |
-
for image_ in image:
|
682 |
-
self.check_image(image_, prompt, prompt_embeds)
|
683 |
-
else:
|
684 |
-
assert False
|
685 |
-
|
686 |
-
# Check `controlnet_conditioning_scale`
|
687 |
-
if (
|
688 |
-
isinstance(self.controlnet, ControlNetModel)
|
689 |
-
or is_compiled
|
690 |
-
and isinstance(self.controlnet._orig_mod, ControlNetModel)
|
691 |
-
):
|
692 |
-
if not isinstance(controlnet_conditioning_scale, float):
|
693 |
-
raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
|
694 |
-
elif (
|
695 |
-
isinstance(self.controlnet, MultiControlNetModel)
|
696 |
-
or is_compiled
|
697 |
-
and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
|
698 |
-
):
|
699 |
-
if isinstance(controlnet_conditioning_scale, list):
|
700 |
-
if any(isinstance(i, list) for i in controlnet_conditioning_scale):
|
701 |
-
raise ValueError("A single batch of multiple conditionings are supported at the moment.")
|
702 |
-
elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len(
|
703 |
-
self.controlnet.nets
|
704 |
-
):
|
705 |
-
raise ValueError(
|
706 |
-
"For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have"
|
707 |
-
" the same length as the number of controlnets"
|
708 |
-
)
|
709 |
-
else:
|
710 |
-
assert False
|
711 |
-
|
712 |
-
if not isinstance(control_guidance_start, (tuple, list)):
|
713 |
-
control_guidance_start = [control_guidance_start]
|
714 |
-
|
715 |
-
if not isinstance(control_guidance_end, (tuple, list)):
|
716 |
-
control_guidance_end = [control_guidance_end]
|
717 |
-
|
718 |
-
if len(control_guidance_start) != len(control_guidance_end):
|
719 |
-
raise ValueError(
|
720 |
-
f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list."
|
721 |
-
)
|
722 |
-
|
723 |
-
if isinstance(self.controlnet, MultiControlNetModel):
|
724 |
-
if len(control_guidance_start) != len(self.controlnet.nets):
|
725 |
-
raise ValueError(
|
726 |
-
f"`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}."
|
727 |
-
)
|
728 |
-
|
729 |
-
for start, end in zip(control_guidance_start, control_guidance_end):
|
730 |
-
if start >= end:
|
731 |
-
raise ValueError(
|
732 |
-
f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}."
|
733 |
-
)
|
734 |
-
if start < 0.0:
|
735 |
-
raise ValueError(f"control guidance start: {start} can't be smaller than 0.")
|
736 |
-
if end > 1.0:
|
737 |
-
raise ValueError(f"control guidance end: {end} can't be larger than 1.0.")
|
738 |
-
|
739 |
-
# Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.check_image
|
740 |
-
def check_image(self, image, prompt, prompt_embeds):
|
741 |
-
image_is_pil = isinstance(image, PIL.Image.Image)
|
742 |
-
image_is_tensor = isinstance(image, torch.Tensor)
|
743 |
-
image_is_np = isinstance(image, np.ndarray)
|
744 |
-
image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
|
745 |
-
image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor)
|
746 |
-
image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray)
|
747 |
-
|
748 |
-
if (
|
749 |
-
not image_is_pil
|
750 |
-
and not image_is_tensor
|
751 |
-
and not image_is_np
|
752 |
-
and not image_is_pil_list
|
753 |
-
and not image_is_tensor_list
|
754 |
-
and not image_is_np_list
|
755 |
-
):
|
756 |
-
raise TypeError(
|
757 |
-
f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}"
|
758 |
-
)
|
759 |
-
|
760 |
-
if image_is_pil:
|
761 |
-
image_batch_size = 1
|
762 |
-
else:
|
763 |
-
image_batch_size = len(image)
|
764 |
-
|
765 |
-
if prompt is not None and isinstance(prompt, str):
|
766 |
-
prompt_batch_size = 1
|
767 |
-
elif prompt is not None and isinstance(prompt, list):
|
768 |
-
prompt_batch_size = len(prompt)
|
769 |
-
elif prompt_embeds is not None:
|
770 |
-
prompt_batch_size = prompt_embeds.shape[0]
|
771 |
-
|
772 |
-
if image_batch_size != 1 and image_batch_size != prompt_batch_size:
|
773 |
-
raise ValueError(
|
774 |
-
f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
|
775 |
-
)
|
776 |
-
|
777 |
-
# Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.prepare_image
|
778 |
-
def prepare_image(
|
779 |
-
self,
|
780 |
-
image,
|
781 |
-
width,
|
782 |
-
height,
|
783 |
-
batch_size,
|
784 |
-
num_images_per_prompt,
|
785 |
-
device,
|
786 |
-
dtype,
|
787 |
-
do_classifier_free_guidance=False,
|
788 |
-
guess_mode=False,
|
789 |
-
):
|
790 |
-
image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
|
791 |
-
image_batch_size = image.shape[0]
|
792 |
-
|
793 |
-
if image_batch_size == 1:
|
794 |
-
repeat_by = batch_size
|
795 |
-
else:
|
796 |
-
# image batch size is the same as prompt batch size
|
797 |
-
repeat_by = num_images_per_prompt
|
798 |
-
|
799 |
-
image = image.repeat_interleave(repeat_by, dim=0)
|
800 |
-
|
801 |
-
image = image.to(device=device, dtype=dtype)
|
802 |
-
|
803 |
-
if do_classifier_free_guidance and not guess_mode:
|
804 |
-
image = torch.cat([image] * 2)
|
805 |
-
|
806 |
-
return image
|
807 |
-
|
808 |
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
809 |
-
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
810 |
-
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
811 |
-
if isinstance(generator, list) and len(generator) != batch_size:
|
812 |
-
raise ValueError(
|
813 |
-
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
814 |
-
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
815 |
-
)
|
816 |
-
|
817 |
-
if latents is None:
|
818 |
-
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
819 |
-
else:
|
820 |
-
latents = latents.to(device)
|
821 |
-
|
822 |
-
# scale the initial noise by the standard deviation required by the scheduler
|
823 |
-
latents = latents * self.scheduler.init_noise_sigma
|
824 |
-
return latents
|
825 |
-
|
826 |
-
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline._get_add_time_ids
|
827 |
-
def _get_add_time_ids(
|
828 |
-
self, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None
|
829 |
-
):
|
830 |
-
add_time_ids = list(original_size + crops_coords_top_left + target_size)
|
831 |
-
|
832 |
-
passed_add_embed_dim = (
|
833 |
-
self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim
|
834 |
-
)
|
835 |
-
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
|
836 |
-
|
837 |
-
if expected_add_embed_dim != passed_add_embed_dim:
|
838 |
-
raise ValueError(
|
839 |
-
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
|
840 |
-
)
|
841 |
-
|
842 |
-
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
|
843 |
-
return add_time_ids
|
844 |
-
|
845 |
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
|
846 |
-
def upcast_vae(self):
|
847 |
-
dtype = self.vae.dtype
|
848 |
-
self.vae.to(dtype=torch.float32)
|
849 |
-
use_torch_2_0_or_xformers = isinstance(
|
850 |
-
self.vae.decoder.mid_block.attentions[0].processor,
|
851 |
-
(
|
852 |
-
AttnProcessor2_0,
|
853 |
-
XFormersAttnProcessor,
|
854 |
-
LoRAXFormersAttnProcessor,
|
855 |
-
LoRAAttnProcessor2_0,
|
856 |
-
),
|
857 |
-
)
|
858 |
-
# if xformers or torch_2_0 is used attention block does not need
|
859 |
-
# to be in float32 which can save lots of memory
|
860 |
-
if use_torch_2_0_or_xformers:
|
861 |
-
self.vae.post_quant_conv.to(dtype)
|
862 |
-
self.vae.decoder.conv_in.to(dtype)
|
863 |
-
self.vae.decoder.mid_block.to(dtype)
|
864 |
-
|
865 |
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_freeu
|
866 |
-
def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
|
867 |
-
r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497.
|
868 |
-
|
869 |
-
The suffixes after the scaling factors represent the stages where they are being applied.
|
870 |
-
|
871 |
-
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values
|
872 |
-
that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
|
873 |
-
|
874 |
-
Args:
|
875 |
-
s1 (`float`):
|
876 |
-
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
|
877 |
-
mitigate "oversmoothing effect" in the enhanced denoising process.
|
878 |
-
s2 (`float`):
|
879 |
-
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
|
880 |
-
mitigate "oversmoothing effect" in the enhanced denoising process.
|
881 |
-
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
|
882 |
-
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
|
883 |
-
"""
|
884 |
-
if not hasattr(self, "unet"):
|
885 |
-
raise ValueError("The pipeline must have `unet` for using FreeU.")
|
886 |
-
self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2)
|
887 |
-
|
888 |
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_freeu
|
889 |
-
def disable_freeu(self):
|
890 |
-
"""Disables the FreeU mechanism if enabled."""
|
891 |
-
self.unet.disable_freeu()
|
892 |
-
|
893 |
-
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
894 |
-
def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
|
895 |
-
"""
|
896 |
-
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
897 |
-
|
898 |
-
Args:
|
899 |
-
timesteps (`torch.Tensor`):
|
900 |
-
generate embedding vectors at these timesteps
|
901 |
-
embedding_dim (`int`, *optional*, defaults to 512):
|
902 |
-
dimension of the embeddings to generate
|
903 |
-
dtype:
|
904 |
-
data type of the generated embeddings
|
905 |
-
|
906 |
-
Returns:
|
907 |
-
`torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
|
908 |
-
"""
|
909 |
-
assert len(w.shape) == 1
|
910 |
-
w = w * 1000.0
|
911 |
-
|
912 |
-
half_dim = embedding_dim // 2
|
913 |
-
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
|
914 |
-
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
|
915 |
-
emb = w.to(dtype)[:, None] * emb[None, :]
|
916 |
-
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
917 |
-
if embedding_dim % 2 == 1: # zero pad
|
918 |
-
emb = torch.nn.functional.pad(emb, (0, 1))
|
919 |
-
assert emb.shape == (w.shape[0], embedding_dim)
|
920 |
-
return emb
|
921 |
-
|
922 |
-
@property
|
923 |
-
def guidance_scale(self):
|
924 |
-
return self._guidance_scale
|
925 |
-
|
926 |
-
@property
|
927 |
-
def clip_skip(self):
|
928 |
-
return self._clip_skip
|
929 |
-
|
930 |
-
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
931 |
-
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
932 |
-
# corresponds to doing no classifier free guidance.
|
933 |
-
@property
|
934 |
-
def do_classifier_free_guidance(self):
|
935 |
-
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
|
936 |
-
|
937 |
-
@property
|
938 |
-
def cross_attention_kwargs(self):
|
939 |
-
return self._cross_attention_kwargs
|
940 |
-
|
941 |
-
@property
|
942 |
-
def num_timesteps(self):
|
943 |
-
return self._num_timesteps
|
944 |
-
|
945 |
-
@torch.no_grad()
|
946 |
-
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
947 |
-
def __call__(
|
948 |
-
self,
|
949 |
-
prompt: Union[str, List[str]] = None,
|
950 |
-
prompt_2: Optional[Union[str, List[str]]] = None,
|
951 |
-
image: PipelineImageInput = None,
|
952 |
-
height: Optional[int] = None,
|
953 |
-
width: Optional[int] = None,
|
954 |
-
num_inference_steps: int = 50,
|
955 |
-
guidance_scale: float = 5.0,
|
956 |
-
negative_prompt: Optional[Union[str, List[str]]] = None,
|
957 |
-
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
958 |
-
num_images_per_prompt: Optional[int] = 1,
|
959 |
-
eta: float = 0.0,
|
960 |
-
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
961 |
-
latents: Optional[torch.FloatTensor] = None,
|
962 |
-
prompt_embeds: Optional[torch.FloatTensor] = None,
|
963 |
-
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
964 |
-
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
965 |
-
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
966 |
-
ip_adapter_image: Optional[PipelineImageInput] = None,
|
967 |
-
output_type: Optional[str] = "pil",
|
968 |
-
return_dict: bool = True,
|
969 |
-
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
970 |
-
controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
|
971 |
-
guess_mode: bool = False,
|
972 |
-
control_guidance_start: Union[float, List[float]] = 0.0,
|
973 |
-
control_guidance_end: Union[float, List[float]] = 1.0,
|
974 |
-
original_size: Tuple[int, int] = None,
|
975 |
-
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
976 |
-
target_size: Tuple[int, int] = None,
|
977 |
-
negative_original_size: Optional[Tuple[int, int]] = None,
|
978 |
-
negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
|
979 |
-
negative_target_size: Optional[Tuple[int, int]] = None,
|
980 |
-
clip_skip: Optional[int] = None,
|
981 |
-
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
982 |
-
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
983 |
-
**kwargs,
|
984 |
-
):
|
985 |
-
r"""
|
986 |
-
The call function to the pipeline for generation.
|
987 |
-
|
988 |
-
Args:
|
989 |
-
prompt (`str` or `List[str]`, *optional*):
|
990 |
-
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
991 |
-
prompt_2 (`str` or `List[str]`, *optional*):
|
992 |
-
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
993 |
-
used in both text-encoders.
|
994 |
-
image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
|
995 |
-
`List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
|
996 |
-
The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
|
997 |
-
specified as `torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be
|
998 |
-
accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If height
|
999 |
-
and/or width are passed, `image` is resized accordingly. If multiple ControlNets are specified in
|
1000 |
-
`init`, images must be passed as a list such that each element of the list can be correctly batched for
|
1001 |
-
input to a single ControlNet.
|
1002 |
-
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
1003 |
-
The height in pixels of the generated image. Anything below 512 pixels won't work well for
|
1004 |
-
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
1005 |
-
and checkpoints that are not specifically fine-tuned on low resolutions.
|
1006 |
-
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
1007 |
-
The width in pixels of the generated image. Anything below 512 pixels won't work well for
|
1008 |
-
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
1009 |
-
and checkpoints that are not specifically fine-tuned on low resolutions.
|
1010 |
-
num_inference_steps (`int`, *optional*, defaults to 50):
|
1011 |
-
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
1012 |
-
expense of slower inference.
|
1013 |
-
guidance_scale (`float`, *optional*, defaults to 5.0):
|
1014 |
-
A higher guidance scale value encourages the model to generate images closely linked to the text
|
1015 |
-
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
1016 |
-
negative_prompt (`str` or `List[str]`, *optional*):
|
1017 |
-
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
1018 |
-
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
1019 |
-
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
1020 |
-
The prompt or prompts to guide what to not include in image generation. This is sent to `tokenizer_2`
|
1021 |
-
and `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders.
|
1022 |
-
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
1023 |
-
The number of images to generate per prompt.
|
1024 |
-
eta (`float`, *optional*, defaults to 0.0):
|
1025 |
-
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
|
1026 |
-
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
1027 |
-
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
1028 |
-
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
1029 |
-
generation deterministic.
|
1030 |
-
latents (`torch.FloatTensor`, *optional*):
|
1031 |
-
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
1032 |
-
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
1033 |
-
tensor is generated by sampling using the supplied random `generator`.
|
1034 |
-
prompt_embeds (`torch.FloatTensor`, *optional*):
|
1035 |
-
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
1036 |
-
provided, text embeddings are generated from the `prompt` input argument.
|
1037 |
-
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
1038 |
-
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
1039 |
-
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
1040 |
-
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
1041 |
-
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
1042 |
-
not provided, pooled text embeddings are generated from `prompt` input argument.
|
1043 |
-
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
1044 |
-
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs (prompt
|
1045 |
-
weighting). If not provided, pooled `negative_prompt_embeds` are generated from `negative_prompt` input
|
1046 |
-
argument.
|
1047 |
-
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
1048 |
-
output_type (`str`, *optional*, defaults to `"pil"`):
|
1049 |
-
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
1050 |
-
return_dict (`bool`, *optional*, defaults to `True`):
|
1051 |
-
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
1052 |
-
plain tuple.
|
1053 |
-
cross_attention_kwargs (`dict`, *optional*):
|
1054 |
-
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
|
1055 |
-
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
1056 |
-
controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
|
1057 |
-
The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
|
1058 |
-
to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
|
1059 |
-
the corresponding scale as a list.
|
1060 |
-
guess_mode (`bool`, *optional*, defaults to `False`):
|
1061 |
-
The ControlNet encoder tries to recognize the content of the input image even if you remove all
|
1062 |
-
prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended.
|
1063 |
-
control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
|
1064 |
-
The percentage of total steps at which the ControlNet starts applying.
|
1065 |
-
control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
|
1066 |
-
The percentage of total steps at which the ControlNet stops applying.
|
1067 |
-
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
1068 |
-
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
|
1069 |
-
`original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
|
1070 |
-
explained in section 2.2 of
|
1071 |
-
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
1072 |
-
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
1073 |
-
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
|
1074 |
-
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
|
1075 |
-
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
|
1076 |
-
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
1077 |
-
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
1078 |
-
For most cases, `target_size` should be set to the desired height and width of the generated image. If
|
1079 |
-
not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
|
1080 |
-
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
1081 |
-
negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
1082 |
-
To negatively condition the generation process based on a specific image resolution. Part of SDXL's
|
1083 |
-
micro-conditioning as explained in section 2.2 of
|
1084 |
-
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
1085 |
-
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
1086 |
-
negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
1087 |
-
To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
|
1088 |
-
micro-conditioning as explained in section 2.2 of
|
1089 |
-
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
1090 |
-
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
1091 |
-
negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
1092 |
-
To negatively condition the generation process based on a target image resolution. It should be as same
|
1093 |
-
as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
|
1094 |
-
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
1095 |
-
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
1096 |
-
clip_skip (`int`, *optional*):
|
1097 |
-
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
1098 |
-
the output of the pre-final layer will be used for computing the prompt embeddings.
|
1099 |
-
callback_on_step_end (`Callable`, *optional*):
|
1100 |
-
A function that calls at the end of each denoising steps during the inference. The function is called
|
1101 |
-
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
1102 |
-
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
1103 |
-
`callback_on_step_end_tensor_inputs`.
|
1104 |
-
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
1105 |
-
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
1106 |
-
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
1107 |
-
`._callback_tensor_inputs` attribute of your pipeine class.
|
1108 |
-
|
1109 |
-
Examples:
|
1110 |
-
|
1111 |
-
Returns:
|
1112 |
-
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
1113 |
-
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
|
1114 |
-
otherwise a `tuple` is returned containing the output images.
|
1115 |
-
"""
|
1116 |
-
|
1117 |
-
callback = kwargs.pop("callback", None)
|
1118 |
-
callback_steps = kwargs.pop("callback_steps", None)
|
1119 |
-
|
1120 |
-
if callback is not None:
|
1121 |
-
deprecate(
|
1122 |
-
"callback",
|
1123 |
-
"1.0.0",
|
1124 |
-
"Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
1125 |
-
)
|
1126 |
-
if callback_steps is not None:
|
1127 |
-
deprecate(
|
1128 |
-
"callback_steps",
|
1129 |
-
"1.0.0",
|
1130 |
-
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
1131 |
-
)
|
1132 |
-
|
1133 |
-
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
|
1134 |
-
|
1135 |
-
# align format for control guidance
|
1136 |
-
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
|
1137 |
-
control_guidance_start = len(control_guidance_end) * [control_guidance_start]
|
1138 |
-
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
|
1139 |
-
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
|
1140 |
-
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
|
1141 |
-
mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
|
1142 |
-
control_guidance_start, control_guidance_end = (
|
1143 |
-
mult * [control_guidance_start],
|
1144 |
-
mult * [control_guidance_end],
|
1145 |
-
)
|
1146 |
-
|
1147 |
-
# 1. Check inputs. Raise error if not correct
|
1148 |
-
self.check_inputs(
|
1149 |
-
prompt,
|
1150 |
-
prompt_2,
|
1151 |
-
image,
|
1152 |
-
callback_steps,
|
1153 |
-
negative_prompt,
|
1154 |
-
negative_prompt_2,
|
1155 |
-
prompt_embeds,
|
1156 |
-
negative_prompt_embeds,
|
1157 |
-
pooled_prompt_embeds,
|
1158 |
-
negative_pooled_prompt_embeds,
|
1159 |
-
controlnet_conditioning_scale,
|
1160 |
-
control_guidance_start,
|
1161 |
-
control_guidance_end,
|
1162 |
-
callback_on_step_end_tensor_inputs,
|
1163 |
-
)
|
1164 |
-
|
1165 |
-
self._guidance_scale = guidance_scale
|
1166 |
-
self._clip_skip = clip_skip
|
1167 |
-
self._cross_attention_kwargs = cross_attention_kwargs
|
1168 |
-
|
1169 |
-
# 2. Define call parameters
|
1170 |
-
if prompt is not None and isinstance(prompt, str):
|
1171 |
-
batch_size = 1
|
1172 |
-
elif prompt is not None and isinstance(prompt, list):
|
1173 |
-
batch_size = len(prompt)
|
1174 |
-
else:
|
1175 |
-
batch_size = prompt_embeds.shape[0]
|
1176 |
-
|
1177 |
-
device = self._execution_device
|
1178 |
-
|
1179 |
-
if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
|
1180 |
-
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)
|
1181 |
-
|
1182 |
-
global_pool_conditions = (
|
1183 |
-
controlnet.config.global_pool_conditions
|
1184 |
-
if isinstance(controlnet, ControlNetModel)
|
1185 |
-
else controlnet.nets[0].config.global_pool_conditions
|
1186 |
-
)
|
1187 |
-
guess_mode = guess_mode or global_pool_conditions
|
1188 |
-
|
1189 |
-
# 3.1 Encode input prompt
|
1190 |
-
text_encoder_lora_scale = (
|
1191 |
-
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
|
1192 |
-
)
|
1193 |
-
(
|
1194 |
-
prompt_embeds,
|
1195 |
-
negative_prompt_embeds,
|
1196 |
-
pooled_prompt_embeds,
|
1197 |
-
negative_pooled_prompt_embeds,
|
1198 |
-
) = self.encode_prompt(
|
1199 |
-
prompt,
|
1200 |
-
prompt_2,
|
1201 |
-
device,
|
1202 |
-
num_images_per_prompt,
|
1203 |
-
self.do_classifier_free_guidance,
|
1204 |
-
negative_prompt,
|
1205 |
-
negative_prompt_2,
|
1206 |
-
prompt_embeds=prompt_embeds,
|
1207 |
-
negative_prompt_embeds=negative_prompt_embeds,
|
1208 |
-
pooled_prompt_embeds=pooled_prompt_embeds,
|
1209 |
-
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
1210 |
-
lora_scale=text_encoder_lora_scale,
|
1211 |
-
clip_skip=self.clip_skip,
|
1212 |
-
)
|
1213 |
-
|
1214 |
-
# 3.2 Encode ip_adapter_image
|
1215 |
-
if ip_adapter_image is not None:
|
1216 |
-
image_embeds = self.prepare_ip_adapter_image_embeds(
|
1217 |
-
ip_adapter_image, device, batch_size * num_images_per_prompt
|
1218 |
-
)
|
1219 |
-
|
1220 |
-
# 4. Prepare image
|
1221 |
-
if isinstance(controlnet, ControlNetModel):
|
1222 |
-
image = self.prepare_image(
|
1223 |
-
image=image,
|
1224 |
-
width=width,
|
1225 |
-
height=height,
|
1226 |
-
batch_size=batch_size * num_images_per_prompt,
|
1227 |
-
num_images_per_prompt=num_images_per_prompt,
|
1228 |
-
device=device,
|
1229 |
-
dtype=controlnet.dtype,
|
1230 |
-
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
1231 |
-
guess_mode=guess_mode,
|
1232 |
-
)
|
1233 |
-
height, width = image.shape[-2:]
|
1234 |
-
height, width = height*self.vae_scale_factor, width*self.vae_scale_factor # for vae controlnet
|
1235 |
-
elif isinstance(controlnet, MultiControlNetModel):
|
1236 |
-
images = []
|
1237 |
-
|
1238 |
-
for image_ in image:
|
1239 |
-
image_ = self.prepare_image(
|
1240 |
-
image=image_,
|
1241 |
-
width=width,
|
1242 |
-
height=height,
|
1243 |
-
batch_size=batch_size * num_images_per_prompt,
|
1244 |
-
num_images_per_prompt=num_images_per_prompt,
|
1245 |
-
device=device,
|
1246 |
-
dtype=controlnet.dtype,
|
1247 |
-
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
1248 |
-
guess_mode=guess_mode,
|
1249 |
-
)
|
1250 |
-
|
1251 |
-
images.append(image_)
|
1252 |
-
|
1253 |
-
image = images
|
1254 |
-
height, width = image[0].shape[-2:]
|
1255 |
-
else:
|
1256 |
-
assert False
|
1257 |
-
|
1258 |
-
# 5. Prepare timesteps
|
1259 |
-
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
1260 |
-
timesteps = self.scheduler.timesteps
|
1261 |
-
self._num_timesteps = len(timesteps)
|
1262 |
-
|
1263 |
-
# 6. Prepare latent variables
|
1264 |
-
num_channels_latents = self.unet.config.in_channels
|
1265 |
-
latents = self.prepare_latents(
|
1266 |
-
batch_size * num_images_per_prompt,
|
1267 |
-
num_channels_latents,
|
1268 |
-
height,
|
1269 |
-
width,
|
1270 |
-
prompt_embeds.dtype,
|
1271 |
-
device,
|
1272 |
-
generator,
|
1273 |
-
latents,
|
1274 |
-
)
|
1275 |
-
|
1276 |
-
# 6.5 Optionally get Guidance Scale Embedding
|
1277 |
-
timestep_cond = None
|
1278 |
-
if self.unet.config.time_cond_proj_dim is not None:
|
1279 |
-
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
|
1280 |
-
timestep_cond = self.get_guidance_scale_embedding(
|
1281 |
-
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
|
1282 |
-
).to(device=device, dtype=latents.dtype)
|
1283 |
-
|
1284 |
-
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
1285 |
-
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
1286 |
-
|
1287 |
-
# 7.1 Create tensor stating which controlnets to keep
|
1288 |
-
controlnet_keep = []
|
1289 |
-
for i in range(len(timesteps)):
|
1290 |
-
keeps = [
|
1291 |
-
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
|
1292 |
-
for s, e in zip(control_guidance_start, control_guidance_end)
|
1293 |
-
]
|
1294 |
-
controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)
|
1295 |
-
|
1296 |
-
# 7.2 Prepare added time ids & embeddings
|
1297 |
-
if isinstance(image, list):
|
1298 |
-
original_size = original_size or image[0].shape[-2:]
|
1299 |
-
else:
|
1300 |
-
original_size = original_size or image.shape[-2:]
|
1301 |
-
target_size = target_size or (height, width)
|
1302 |
-
|
1303 |
-
add_text_embeds = pooled_prompt_embeds
|
1304 |
-
if self.text_encoder_2 is None:
|
1305 |
-
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
|
1306 |
-
else:
|
1307 |
-
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
|
1308 |
-
|
1309 |
-
add_time_ids = self._get_add_time_ids(
|
1310 |
-
original_size,
|
1311 |
-
crops_coords_top_left,
|
1312 |
-
target_size,
|
1313 |
-
dtype=prompt_embeds.dtype,
|
1314 |
-
text_encoder_projection_dim=text_encoder_projection_dim,
|
1315 |
-
)
|
1316 |
-
|
1317 |
-
if negative_original_size is not None and negative_target_size is not None:
|
1318 |
-
negative_add_time_ids = self._get_add_time_ids(
|
1319 |
-
negative_original_size,
|
1320 |
-
negative_crops_coords_top_left,
|
1321 |
-
negative_target_size,
|
1322 |
-
dtype=prompt_embeds.dtype,
|
1323 |
-
text_encoder_projection_dim=text_encoder_projection_dim,
|
1324 |
-
)
|
1325 |
-
else:
|
1326 |
-
negative_add_time_ids = add_time_ids
|
1327 |
-
|
1328 |
-
if self.do_classifier_free_guidance:
|
1329 |
-
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
1330 |
-
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
1331 |
-
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
|
1332 |
-
|
1333 |
-
prompt_embeds = prompt_embeds.to(device)
|
1334 |
-
add_text_embeds = add_text_embeds.to(device)
|
1335 |
-
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
|
1336 |
-
|
1337 |
-
# 8. Denoising loop
|
1338 |
-
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
1339 |
-
is_unet_compiled = is_compiled_module(self.unet)
|
1340 |
-
is_controlnet_compiled = is_compiled_module(self.controlnet)
|
1341 |
-
is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1")
|
1342 |
-
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
1343 |
-
for i, t in enumerate(timesteps):
|
1344 |
-
# Relevant thread:
|
1345 |
-
# https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428
|
1346 |
-
if (is_unet_compiled and is_controlnet_compiled) and is_torch_higher_equal_2_1:
|
1347 |
-
torch._inductor.cudagraph_mark_step_begin()
|
1348 |
-
# expand the latents if we are doing classifier free guidance
|
1349 |
-
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
1350 |
-
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
1351 |
-
|
1352 |
-
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
1353 |
-
|
1354 |
-
# controlnet(s) inference
|
1355 |
-
if guess_mode and self.do_classifier_free_guidance:
|
1356 |
-
# Infer ControlNet only for the conditional batch.
|
1357 |
-
control_model_input = latents
|
1358 |
-
control_model_input = self.scheduler.scale_model_input(control_model_input, t)
|
1359 |
-
controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
|
1360 |
-
controlnet_added_cond_kwargs = {
|
1361 |
-
"text_embeds": add_text_embeds.chunk(2)[1],
|
1362 |
-
"time_ids": add_time_ids.chunk(2)[1],
|
1363 |
-
}
|
1364 |
-
else:
|
1365 |
-
control_model_input = latent_model_input
|
1366 |
-
controlnet_prompt_embeds = prompt_embeds
|
1367 |
-
controlnet_added_cond_kwargs = added_cond_kwargs
|
1368 |
-
|
1369 |
-
if isinstance(controlnet_keep[i], list):
|
1370 |
-
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
|
1371 |
-
else:
|
1372 |
-
controlnet_cond_scale = controlnet_conditioning_scale
|
1373 |
-
if isinstance(controlnet_cond_scale, list):
|
1374 |
-
controlnet_cond_scale = controlnet_cond_scale[0]
|
1375 |
-
cond_scale = controlnet_cond_scale * controlnet_keep[i]
|
1376 |
-
|
1377 |
-
down_block_res_samples, mid_block_res_sample = self.controlnet(
|
1378 |
-
control_model_input,
|
1379 |
-
t,
|
1380 |
-
encoder_hidden_states=controlnet_prompt_embeds,
|
1381 |
-
controlnet_cond=image,
|
1382 |
-
conditioning_scale=cond_scale,
|
1383 |
-
guess_mode=guess_mode,
|
1384 |
-
added_cond_kwargs=controlnet_added_cond_kwargs,
|
1385 |
-
return_dict=False,
|
1386 |
-
)
|
1387 |
-
|
1388 |
-
if guess_mode and self.do_classifier_free_guidance:
|
1389 |
-
# Infered ControlNet only for the conditional batch.
|
1390 |
-
# To apply the output of ControlNet to both the unconditional and conditional batches,
|
1391 |
-
# add 0 to the unconditional batch to keep it unchanged.
|
1392 |
-
down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
|
1393 |
-
mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
|
1394 |
-
|
1395 |
-
if ip_adapter_image is not None:
|
1396 |
-
added_cond_kwargs["image_embeds"] = image_embeds
|
1397 |
-
|
1398 |
-
# predict the noise residual
|
1399 |
-
noise_pred = self.unet(
|
1400 |
-
latent_model_input,
|
1401 |
-
t,
|
1402 |
-
encoder_hidden_states=prompt_embeds,
|
1403 |
-
timestep_cond=timestep_cond,
|
1404 |
-
cross_attention_kwargs=self.cross_attention_kwargs,
|
1405 |
-
down_block_additional_residuals=down_block_res_samples,
|
1406 |
-
mid_block_additional_residual=mid_block_res_sample,
|
1407 |
-
added_cond_kwargs=added_cond_kwargs,
|
1408 |
-
return_dict=False,
|
1409 |
-
)[0]
|
1410 |
-
|
1411 |
-
# perform guidance
|
1412 |
-
if self.do_classifier_free_guidance:
|
1413 |
-
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
1414 |
-
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1415 |
-
|
1416 |
-
# compute the previous noisy sample x_t -> x_t-1
|
1417 |
-
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
1418 |
-
|
1419 |
-
if callback_on_step_end is not None:
|
1420 |
-
callback_kwargs = {}
|
1421 |
-
for k in callback_on_step_end_tensor_inputs:
|
1422 |
-
callback_kwargs[k] = locals()[k]
|
1423 |
-
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
1424 |
-
|
1425 |
-
latents = callback_outputs.pop("latents", latents)
|
1426 |
-
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
1427 |
-
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
1428 |
-
|
1429 |
-
# call the callback, if provided
|
1430 |
-
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
1431 |
-
progress_bar.update()
|
1432 |
-
if callback is not None and i % callback_steps == 0:
|
1433 |
-
step_idx = i // getattr(self.scheduler, "order", 1)
|
1434 |
-
callback(step_idx, t, latents)
|
1435 |
-
|
1436 |
-
if not output_type == "latent":
|
1437 |
-
# make sure the VAE is in float32 mode, as it overflows in float16
|
1438 |
-
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
1439 |
-
|
1440 |
-
if needs_upcasting:
|
1441 |
-
self.upcast_vae()
|
1442 |
-
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
1443 |
-
|
1444 |
-
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
1445 |
-
|
1446 |
-
# cast back to fp16 if needed
|
1447 |
-
if needs_upcasting:
|
1448 |
-
self.vae.to(dtype=torch.float16)
|
1449 |
-
else:
|
1450 |
-
image = latents
|
1451 |
-
|
1452 |
-
if not output_type == "latent":
|
1453 |
-
# apply watermark if available
|
1454 |
-
if self.watermark is not None:
|
1455 |
-
image = self.watermark.apply_watermark(image)
|
1456 |
-
|
1457 |
-
image = self.image_processor.postprocess(image, output_type=output_type)
|
1458 |
-
|
1459 |
-
# Offload all models
|
1460 |
-
self.maybe_free_model_hooks()
|
1461 |
-
|
1462 |
-
if not return_dict:
|
1463 |
-
return (image,)
|
1464 |
-
|
1465 |
-
return StableDiffusionXLPipelineOutput(images=image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|