Spaces:
Running
on
Zero
Running
on
Zero
File size: 40,779 Bytes
d29ef6c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 |
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import warnings
from typing import List, Optional, Tuple, Union
import numpy as np
import PIL.Image
import torch
import torch.nn.functional as F
from PIL import Image, ImageFilter, ImageOps
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.utils import CONFIG_NAME, PIL_INTERPOLATION, deprecate
# from .utils import CONFIG_NAME, PIL_INTERPOLATION, deprecate
PipelineImageInput = Union[
PIL.Image.Image,
np.ndarray,
torch.FloatTensor,
List[PIL.Image.Image],
List[np.ndarray],
List[torch.FloatTensor],
]
PipelineDepthInput = PipelineImageInput
class VaeImageProcessor(ConfigMixin):
"""
Image processor for VAE.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`. Can accept
`height` and `width` arguments from [`image_processor.VaeImageProcessor.preprocess`] method.
vae_scale_factor (`int`, *optional*, defaults to `8`):
VAE scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of this factor.
resample (`str`, *optional*, defaults to `lanczos`):
Resampling filter to use when resizing the image.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image to [-1,1].
do_binarize (`bool`, *optional*, defaults to `False`):
Whether to binarize the image to 0/1.
do_convert_rgb (`bool`, *optional*, defaults to be `False`):
Whether to convert the images to RGB format.
do_convert_grayscale (`bool`, *optional*, defaults to be `False`):
Whether to convert the images to grayscale format.
"""
config_name = CONFIG_NAME
@register_to_config
def __init__(
self,
do_resize: bool = True,
vae_scale_factor: int = 8,
resample: str = "lanczos",
do_normalize: bool = True,
do_binarize: bool = False,
do_convert_rgb: bool = False,
do_convert_grayscale: bool = False,
):
super().__init__()
if do_convert_rgb and do_convert_grayscale:
raise ValueError(
"`do_convert_rgb` and `do_convert_grayscale` can not both be set to `True`,"
" if you intended to convert the image into RGB format, please set `do_convert_grayscale = False`.",
" if you intended to convert the image into grayscale format, please set `do_convert_rgb = False`",
)
self.config.do_convert_rgb = False
@staticmethod
def numpy_to_pil(images: np.ndarray) -> List[PIL.Image.Image]:
"""
Convert a numpy image or a batch of images to a PIL image.
"""
if images.ndim == 3:
images = images[None, ...]
images = (images * 255).round().astype("uint8")
if images.shape[-1] == 1:
# special case for grayscale (single channel) images
pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
else:
pil_images = [Image.fromarray(image) for image in images]
return pil_images
@staticmethod
def pil_to_numpy(images: Union[List[PIL.Image.Image], PIL.Image.Image]) -> np.ndarray:
"""
Convert a PIL image or a list of PIL images to NumPy arrays.
"""
if not isinstance(images, list):
images = [images]
images = [np.array(image).astype(np.float32) / 255.0 for image in images]
images = np.stack(images, axis=0)
return images
@staticmethod
def numpy_to_pt(images: np.ndarray) -> torch.FloatTensor:
"""
Convert a NumPy image to a PyTorch tensor.
"""
if images.ndim == 3:
images = images[..., None]
images = torch.from_numpy(images.transpose(0, 3, 1, 2))
return images
@staticmethod
def pt_to_numpy(images: torch.FloatTensor) -> np.ndarray:
"""
Convert a PyTorch tensor to a NumPy image.
"""
images = images.cpu().permute(0, 2, 3, 1).float().numpy()
return images
@staticmethod
def normalize(images: Union[np.ndarray, torch.Tensor]) -> Union[np.ndarray, torch.Tensor]:
"""
Normalize an image array to [-1,1].
"""
return 2.0 * images - 1.0
@staticmethod
def denormalize(images: Union[np.ndarray, torch.Tensor]) -> Union[np.ndarray, torch.Tensor]:
"""
Denormalize an image array to [0,1].
"""
return (images / 2 + 0.5).clamp(0, 1)
@staticmethod
def convert_to_rgb(image: PIL.Image.Image) -> PIL.Image.Image:
"""
Converts a PIL image to RGB format.
"""
image = image.convert("RGB")
return image
@staticmethod
def convert_to_grayscale(image: PIL.Image.Image) -> PIL.Image.Image:
"""
Converts a PIL image to grayscale format.
"""
image = image.convert("L")
return image
@staticmethod
def blur(image: PIL.Image.Image, blur_factor: int = 4) -> PIL.Image.Image:
"""
Applies Gaussian blur to an image.
"""
image = image.filter(ImageFilter.GaussianBlur(blur_factor))
return image
@staticmethod
def get_crop_region(mask_image: PIL.Image.Image, width: int, height: int, pad=0):
"""
Finds a rectangular region that contains all masked ares in an image, and expands region to match the aspect ratio of the original image;
for example, if user drew mask in a 128x32 region, and the dimensions for processing are 512x512, the region will be expanded to 128x128.
Args:
mask_image (PIL.Image.Image): Mask image.
width (int): Width of the image to be processed.
height (int): Height of the image to be processed.
pad (int, optional): Padding to be added to the crop region. Defaults to 0.
Returns:
tuple: (x1, y1, x2, y2) represent a rectangular region that contains all masked ares in an image and matches the original aspect ratio.
"""
mask_image = mask_image.convert("L")
mask = np.array(mask_image)
# 1. find a rectangular region that contains all masked ares in an image
h, w = mask.shape
crop_left = 0
for i in range(w):
if not (mask[:, i] == 0).all():
break
crop_left += 1
crop_right = 0
for i in reversed(range(w)):
if not (mask[:, i] == 0).all():
break
crop_right += 1
crop_top = 0
for i in range(h):
if not (mask[i] == 0).all():
break
crop_top += 1
crop_bottom = 0
for i in reversed(range(h)):
if not (mask[i] == 0).all():
break
crop_bottom += 1
# 2. add padding to the crop region
x1, y1, x2, y2 = (
int(max(crop_left - pad, 0)),
int(max(crop_top - pad, 0)),
int(min(w - crop_right + pad, w)),
int(min(h - crop_bottom + pad, h)),
)
# 3. expands crop region to match the aspect ratio of the image to be processed
ratio_crop_region = (x2 - x1) / (y2 - y1)
ratio_processing = width / height
if ratio_crop_region > ratio_processing:
desired_height = (x2 - x1) / ratio_processing
desired_height_diff = int(desired_height - (y2 - y1))
y1 -= desired_height_diff // 2
y2 += desired_height_diff - desired_height_diff // 2
if y2 >= mask_image.height:
diff = y2 - mask_image.height
y2 -= diff
y1 -= diff
if y1 < 0:
y2 -= y1
y1 -= y1
if y2 >= mask_image.height:
y2 = mask_image.height
else:
desired_width = (y2 - y1) * ratio_processing
desired_width_diff = int(desired_width - (x2 - x1))
x1 -= desired_width_diff // 2
x2 += desired_width_diff - desired_width_diff // 2
if x2 >= mask_image.width:
diff = x2 - mask_image.width
x2 -= diff
x1 -= diff
if x1 < 0:
x2 -= x1
x1 -= x1
if x2 >= mask_image.width:
x2 = mask_image.width
return x1, y1, x2, y2
def _resize_and_fill(
self,
image: PIL.Image.Image,
width: int,
height: int,
) -> PIL.Image.Image:
"""
Resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image within the dimensions, filling empty with data from image.
Args:
image: The image to resize.
width: The width to resize the image to.
height: The height to resize the image to.
"""
ratio = width / height
src_ratio = image.width / image.height
src_w = width if ratio < src_ratio else image.width * height // image.height
src_h = height if ratio >= src_ratio else image.height * width // image.width
resized = image.resize((src_w, src_h), resample=PIL_INTERPOLATION["lanczos"])
res = Image.new("RGB", (width, height))
res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2))
if ratio < src_ratio:
fill_height = height // 2 - src_h // 2
if fill_height > 0:
res.paste(resized.resize((width, fill_height), box=(0, 0, width, 0)), box=(0, 0))
res.paste(
resized.resize((width, fill_height), box=(0, resized.height, width, resized.height)),
box=(0, fill_height + src_h),
)
elif ratio > src_ratio:
fill_width = width // 2 - src_w // 2
if fill_width > 0:
res.paste(resized.resize((fill_width, height), box=(0, 0, 0, height)), box=(0, 0))
res.paste(
resized.resize((fill_width, height), box=(resized.width, 0, resized.width, height)),
box=(fill_width + src_w, 0),
)
return res
def _resize_and_crop(
self,
image: PIL.Image.Image,
width: int,
height: int,
) -> PIL.Image.Image:
"""
Resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image within the dimensions, cropping the excess.
Args:
image: The image to resize.
width: The width to resize the image to.
height: The height to resize the image to.
"""
ratio = width / height
src_ratio = image.width / image.height
src_w = width if ratio > src_ratio else image.width * height // image.height
src_h = height if ratio <= src_ratio else image.height * width // image.width
resized = image.resize((src_w, src_h), resample=PIL_INTERPOLATION["lanczos"])
res = Image.new("RGB", (width, height))
res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2))
return res
def resize(
self,
image: Union[PIL.Image.Image, np.ndarray, torch.Tensor],
height: int,
width: int,
resize_mode: str = "default", # "default", "fill", "crop"
) -> Union[PIL.Image.Image, np.ndarray, torch.Tensor]:
"""
Resize image.
Args:
image (`PIL.Image.Image`, `np.ndarray` or `torch.Tensor`):
The image input, can be a PIL image, numpy array or pytorch tensor.
height (`int`):
The height to resize to.
width (`int`):
The width to resize to.
resize_mode (`str`, *optional*, defaults to `default`):
The resize mode to use, can be one of `default` or `fill`. If `default`, will resize the image to fit
within the specified width and height, and it may not maintaining the original aspect ratio.
If `fill`, will resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image
within the dimensions, filling empty with data from image.
If `crop`, will resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image
within the dimensions, cropping the excess.
Note that resize_mode `fill` and `crop` are only supported for PIL image input.
Returns:
`PIL.Image.Image`, `np.ndarray` or `torch.Tensor`:
The resized image.
"""
if resize_mode != "default" and not isinstance(image, PIL.Image.Image):
raise ValueError(f"Only PIL image input is supported for resize_mode {resize_mode}")
if isinstance(image, PIL.Image.Image):
if resize_mode == "default":
image = image.resize((width, height), resample=PIL_INTERPOLATION[self.config.resample])
elif resize_mode == "fill":
image = self._resize_and_fill(image, width, height)
elif resize_mode == "crop":
image = self._resize_and_crop(image, width, height)
else:
raise ValueError(f"resize_mode {resize_mode} is not supported")
elif isinstance(image, torch.Tensor):
image = torch.nn.functional.interpolate(
image,
size=(height, width),
)
elif isinstance(image, np.ndarray):
image = self.numpy_to_pt(image)
image = torch.nn.functional.interpolate(
image,
size=(height, width),
)
image = self.pt_to_numpy(image)
return image
def binarize(self, image: PIL.Image.Image) -> PIL.Image.Image:
"""
Create a mask.
Args:
image (`PIL.Image.Image`):
The image input, should be a PIL image.
Returns:
`PIL.Image.Image`:
The binarized image. Values less than 0.5 are set to 0, values greater than 0.5 are set to 1.
"""
image[image < 0.5] = 0
image[image >= 0.5] = 1
return image
def get_default_height_width(
self,
image: Union[PIL.Image.Image, np.ndarray, torch.Tensor],
height: Optional[int] = None,
width: Optional[int] = None,
) -> Tuple[int, int]:
"""
This function return the height and width that are downscaled to the next integer multiple of
`vae_scale_factor`.
Args:
image(`PIL.Image.Image`, `np.ndarray` or `torch.Tensor`):
The image input, can be a PIL image, numpy array or pytorch tensor. if it is a numpy array, should have
shape `[batch, height, width]` or `[batch, height, width, channel]` if it is a pytorch tensor, should
have shape `[batch, channel, height, width]`.
height (`int`, *optional*, defaults to `None`):
The height in preprocessed image. If `None`, will use the height of `image` input.
width (`int`, *optional*`, defaults to `None`):
The width in preprocessed. If `None`, will use the width of the `image` input.
"""
if height is None:
if isinstance(image, PIL.Image.Image):
height = image.height
elif isinstance(image, torch.Tensor):
height = image.shape[2]
else:
height = image.shape[1]
if width is None:
if isinstance(image, PIL.Image.Image):
width = image.width
elif isinstance(image, torch.Tensor):
width = image.shape[3]
else:
width = image.shape[2]
width, height = (
x - x % self.config.vae_scale_factor for x in (width, height)
) # resize to integer multiple of vae_scale_factor
return height, width
def preprocess(
self,
image: PipelineImageInput,
height: Optional[int] = None,
width: Optional[int] = None,
resize_mode: str = "default", # "default", "fill", "crop"
crops_coords: Optional[Tuple[int, int, int, int]] = None,
) -> torch.Tensor:
"""
Preprocess the image input.
Args:
image (`pipeline_image_input`):
The image input, accepted formats are PIL images, NumPy arrays, PyTorch tensors; Also accept list of supported formats.
height (`int`, *optional*, defaults to `None`):
The height in preprocessed image. If `None`, will use the `get_default_height_width()` to get default height.
width (`int`, *optional*`, defaults to `None`):
The width in preprocessed. If `None`, will use get_default_height_width()` to get the default width.
resize_mode (`str`, *optional*, defaults to `default`):
The resize mode, can be one of `default` or `fill`. If `default`, will resize the image to fit
within the specified width and height, and it may not maintaining the original aspect ratio.
If `fill`, will resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image
within the dimensions, filling empty with data from image.
If `crop`, will resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image
within the dimensions, cropping the excess.
Note that resize_mode `fill` and `crop` are only supported for PIL image input.
crops_coords (`List[Tuple[int, int, int, int]]`, *optional*, defaults to `None`):
The crop coordinates for each image in the batch. If `None`, will not crop the image.
"""
supported_formats = (PIL.Image.Image, np.ndarray, torch.Tensor)
# Expand the missing dimension for 3-dimensional pytorch tensor or numpy array that represents grayscale image
if self.config.do_convert_grayscale and isinstance(image, (torch.Tensor, np.ndarray)) and image.ndim == 3:
if isinstance(image, torch.Tensor):
# if image is a pytorch tensor could have 2 possible shapes:
# 1. batch x height x width: we should insert the channel dimension at position 1
# 2. channel x height x width: we should insert batch dimension at position 0,
# however, since both channel and batch dimension has same size 1, it is same to insert at position 1
# for simplicity, we insert a dimension of size 1 at position 1 for both cases
image = image.unsqueeze(1)
else:
# if it is a numpy array, it could have 2 possible shapes:
# 1. batch x height x width: insert channel dimension on last position
# 2. height x width x channel: insert batch dimension on first position
if image.shape[-1] == 1:
image = np.expand_dims(image, axis=0)
else:
image = np.expand_dims(image, axis=-1)
if isinstance(image, supported_formats):
image = [image]
elif not (isinstance(image, list) and all(isinstance(i, supported_formats) for i in image)):
raise ValueError(
f"Input is in incorrect format: {[type(i) for i in image]}. Currently, we only support {', '.join(supported_formats)}"
)
if isinstance(image[0], PIL.Image.Image):
if crops_coords is not None:
image = [i.crop(crops_coords) for i in image]
if self.config.do_resize:
height, width = self.get_default_height_width(image[0], height, width)
image = [self.resize(i, height, width, resize_mode=resize_mode) for i in image]
if self.config.do_convert_rgb:
image = [self.convert_to_rgb(i) for i in image]
elif self.config.do_convert_grayscale:
image = [self.convert_to_grayscale(i) for i in image]
image = self.pil_to_numpy(image) # to np
image = self.numpy_to_pt(image) # to pt
elif isinstance(image[0], np.ndarray):
image = np.concatenate(image, axis=0) if image[0].ndim == 4 else np.stack(image, axis=0)
image = self.numpy_to_pt(image)
height, width = self.get_default_height_width(image, height, width)
if self.config.do_resize:
image = self.resize(image, height, width)
elif isinstance(image[0], torch.Tensor):
image = torch.cat(image, axis=0) if image[0].ndim == 4 else torch.stack(image, axis=0)
if self.config.do_convert_grayscale and image.ndim == 3:
image = image.unsqueeze(1)
channel = image.shape[1]
# don't need any preprocess if the image is latents
if channel >= 4:
return image
height, width = self.get_default_height_width(image, height, width)
if self.config.do_resize:
image = self.resize(image, height, width)
# expected range [0,1], normalize to [-1,1]
do_normalize = self.config.do_normalize
if do_normalize and image.min() < 0:
warnings.warn(
"Passing `image` as torch tensor with value range in [-1,1] is deprecated. The expected value range for image tensor is [0,1] "
f"when passing as pytorch tensor or numpy Array. You passed `image` with value range [{image.min()},{image.max()}]",
FutureWarning,
)
do_normalize = False
if do_normalize:
image = self.normalize(image)
if self.config.do_binarize:
image = self.binarize(image)
return image
def postprocess(
self,
image: torch.FloatTensor,
output_type: str = "pil",
do_denormalize: Optional[List[bool]] = None,
) -> Union[PIL.Image.Image, np.ndarray, torch.FloatTensor]:
"""
Postprocess the image output from tensor to `output_type`.
Args:
image (`torch.FloatTensor`):
The image input, should be a pytorch tensor with shape `B x C x H x W`.
output_type (`str`, *optional*, defaults to `pil`):
The output type of the image, can be one of `pil`, `np`, `pt`, `latent`.
do_denormalize (`List[bool]`, *optional*, defaults to `None`):
Whether to denormalize the image to [0,1]. If `None`, will use the value of `do_normalize` in the
`VaeImageProcessor` config.
Returns:
`PIL.Image.Image`, `np.ndarray` or `torch.FloatTensor`:
The postprocessed image.
"""
if not isinstance(image, torch.Tensor):
raise ValueError(
f"Input for postprocessing is in incorrect format: {type(image)}. We only support pytorch tensor"
)
if output_type not in ["latent", "pt", "np", "pil"]:
deprecation_message = (
f"the output_type {output_type} is outdated and has been set to `np`. Please make sure to set it to one of these instead: "
"`pil`, `np`, `pt`, `latent`"
)
deprecate("Unsupported output_type", "1.0.0", deprecation_message, standard_warn=False)
output_type = "np"
if output_type == "latent":
return image
if do_denormalize is None:
do_denormalize = [self.config.do_normalize] * image.shape[0]
image = torch.stack(
[self.denormalize(image[i]) if do_denormalize[i] else image[i] for i in range(image.shape[0])]
)
if output_type == "pt":
return image
image = self.pt_to_numpy(image)
if output_type == "np":
return image
if output_type == "pil":
return self.numpy_to_pil(image)
def apply_overlay(
self,
mask: PIL.Image.Image,
init_image: PIL.Image.Image,
image: PIL.Image.Image,
crop_coords: Optional[Tuple[int, int, int, int]] = None,
) -> PIL.Image.Image:
"""
overlay the inpaint output to the original image
"""
width, height = image.width, image.height
init_image = self.resize(init_image, width=width, height=height)
mask = self.resize(mask, width=width, height=height)
init_image_masked = PIL.Image.new("RGBa", (width, height))
init_image_masked.paste(init_image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(mask.convert("L")))
init_image_masked = init_image_masked.convert("RGBA")
if crop_coords is not None:
x, y, x2, y2 = crop_coords
w = x2 - x
h = y2 - y
base_image = PIL.Image.new("RGBA", (width, height))
image = self.resize(image, height=h, width=w, resize_mode="crop")
base_image.paste(image, (x, y))
image = base_image.convert("RGB")
image = image.convert("RGBA")
image.alpha_composite(init_image_masked)
image = image.convert("RGB")
return image
class VaeImageProcessorLDM3D(VaeImageProcessor):
"""
Image processor for VAE LDM3D.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`.
vae_scale_factor (`int`, *optional*, defaults to `8`):
VAE scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of this factor.
resample (`str`, *optional*, defaults to `lanczos`):
Resampling filter to use when resizing the image.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image to [-1,1].
"""
config_name = CONFIG_NAME
@register_to_config
def __init__(
self,
do_resize: bool = True,
vae_scale_factor: int = 8,
resample: str = "lanczos",
do_normalize: bool = True,
):
super().__init__()
@staticmethod
def numpy_to_pil(images: np.ndarray) -> List[PIL.Image.Image]:
"""
Convert a NumPy image or a batch of images to a PIL image.
"""
if images.ndim == 3:
images = images[None, ...]
images = (images * 255).round().astype("uint8")
if images.shape[-1] == 1:
# special case for grayscale (single channel) images
pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
else:
pil_images = [Image.fromarray(image[:, :, :3]) for image in images]
return pil_images
@staticmethod
def depth_pil_to_numpy(images: Union[List[PIL.Image.Image], PIL.Image.Image]) -> np.ndarray:
"""
Convert a PIL image or a list of PIL images to NumPy arrays.
"""
if not isinstance(images, list):
images = [images]
images = [np.array(image).astype(np.float32) / (2**16 - 1) for image in images]
images = np.stack(images, axis=0)
return images
@staticmethod
def rgblike_to_depthmap(image: Union[np.ndarray, torch.Tensor]) -> Union[np.ndarray, torch.Tensor]:
"""
Args:
image: RGB-like depth image
Returns: depth map
"""
return image[:, :, 1] * 2**8 + image[:, :, 2]
def numpy_to_depth(self, images: np.ndarray) -> List[PIL.Image.Image]:
"""
Convert a NumPy depth image or a batch of images to a PIL image.
"""
if images.ndim == 3:
images = images[None, ...]
images_depth = images[:, :, :, 3:]
if images.shape[-1] == 6:
images_depth = (images_depth * 255).round().astype("uint8")
pil_images = [
Image.fromarray(self.rgblike_to_depthmap(image_depth), mode="I;16") for image_depth in images_depth
]
elif images.shape[-1] == 4:
images_depth = (images_depth * 65535.0).astype(np.uint16)
pil_images = [Image.fromarray(image_depth, mode="I;16") for image_depth in images_depth]
else:
raise Exception("Not supported")
return pil_images
def postprocess(
self,
image: torch.FloatTensor,
output_type: str = "pil",
do_denormalize: Optional[List[bool]] = None,
) -> Union[PIL.Image.Image, np.ndarray, torch.FloatTensor]:
"""
Postprocess the image output from tensor to `output_type`.
Args:
image (`torch.FloatTensor`):
The image input, should be a pytorch tensor with shape `B x C x H x W`.
output_type (`str`, *optional*, defaults to `pil`):
The output type of the image, can be one of `pil`, `np`, `pt`, `latent`.
do_denormalize (`List[bool]`, *optional*, defaults to `None`):
Whether to denormalize the image to [0,1]. If `None`, will use the value of `do_normalize` in the
`VaeImageProcessor` config.
Returns:
`PIL.Image.Image`, `np.ndarray` or `torch.FloatTensor`:
The postprocessed image.
"""
if not isinstance(image, torch.Tensor):
raise ValueError(
f"Input for postprocessing is in incorrect format: {type(image)}. We only support pytorch tensor"
)
if output_type not in ["latent", "pt", "np", "pil"]:
deprecation_message = (
f"the output_type {output_type} is outdated and has been set to `np`. Please make sure to set it to one of these instead: "
"`pil`, `np`, `pt`, `latent`"
)
deprecate("Unsupported output_type", "1.0.0", deprecation_message, standard_warn=False)
output_type = "np"
if do_denormalize is None:
do_denormalize = [self.config.do_normalize] * image.shape[0]
image = torch.stack(
[self.denormalize(image[i]) if do_denormalize[i] else image[i] for i in range(image.shape[0])]
)
image = self.pt_to_numpy(image)
if output_type == "np":
if image.shape[-1] == 6:
image_depth = np.stack([self.rgblike_to_depthmap(im[:, :, 3:]) for im in image], axis=0)
else:
image_depth = image[:, :, :, 3:]
return image[:, :, :, :3], image_depth
if output_type == "pil":
return self.numpy_to_pil(image), self.numpy_to_depth(image)
else:
raise Exception(f"This type {output_type} is not supported")
def preprocess(
self,
rgb: Union[torch.FloatTensor, PIL.Image.Image, np.ndarray],
depth: Union[torch.FloatTensor, PIL.Image.Image, np.ndarray],
height: Optional[int] = None,
width: Optional[int] = None,
target_res: Optional[int] = None,
) -> torch.Tensor:
"""
Preprocess the image input. Accepted formats are PIL images, NumPy arrays or PyTorch tensors.
"""
supported_formats = (PIL.Image.Image, np.ndarray, torch.Tensor)
# Expand the missing dimension for 3-dimensional pytorch tensor or numpy array that represents grayscale image
if self.config.do_convert_grayscale and isinstance(rgb, (torch.Tensor, np.ndarray)) and rgb.ndim == 3:
raise Exception("This is not yet supported")
if isinstance(rgb, supported_formats):
rgb = [rgb]
depth = [depth]
elif not (isinstance(rgb, list) and all(isinstance(i, supported_formats) for i in rgb)):
raise ValueError(
f"Input is in incorrect format: {[type(i) for i in rgb]}. Currently, we only support {', '.join(supported_formats)}"
)
if isinstance(rgb[0], PIL.Image.Image):
if self.config.do_convert_rgb:
raise Exception("This is not yet supported")
# rgb = [self.convert_to_rgb(i) for i in rgb]
# depth = [self.convert_to_depth(i) for i in depth] #TODO define convert_to_depth
if self.config.do_resize or target_res:
height, width = self.get_default_height_width(rgb[0], height, width) if not target_res else target_res
rgb = [self.resize(i, height, width) for i in rgb]
depth = [self.resize(i, height, width) for i in depth]
rgb = self.pil_to_numpy(rgb) # to np
rgb = self.numpy_to_pt(rgb) # to pt
depth = self.depth_pil_to_numpy(depth) # to np
depth = self.numpy_to_pt(depth) # to pt
elif isinstance(rgb[0], np.ndarray):
rgb = np.concatenate(rgb, axis=0) if rgb[0].ndim == 4 else np.stack(rgb, axis=0)
rgb = self.numpy_to_pt(rgb)
height, width = self.get_default_height_width(rgb, height, width)
if self.config.do_resize:
rgb = self.resize(rgb, height, width)
depth = np.concatenate(depth, axis=0) if rgb[0].ndim == 4 else np.stack(depth, axis=0)
depth = self.numpy_to_pt(depth)
height, width = self.get_default_height_width(depth, height, width)
if self.config.do_resize:
depth = self.resize(depth, height, width)
elif isinstance(rgb[0], torch.Tensor):
raise Exception("This is not yet supported")
# rgb = torch.cat(rgb, axis=0) if rgb[0].ndim == 4 else torch.stack(rgb, axis=0)
# if self.config.do_convert_grayscale and rgb.ndim == 3:
# rgb = rgb.unsqueeze(1)
# channel = rgb.shape[1]
# height, width = self.get_default_height_width(rgb, height, width)
# if self.config.do_resize:
# rgb = self.resize(rgb, height, width)
# depth = torch.cat(depth, axis=0) if depth[0].ndim == 4 else torch.stack(depth, axis=0)
# if self.config.do_convert_grayscale and depth.ndim == 3:
# depth = depth.unsqueeze(1)
# channel = depth.shape[1]
# # don't need any preprocess if the image is latents
# if depth == 4:
# return rgb, depth
# height, width = self.get_default_height_width(depth, height, width)
# if self.config.do_resize:
# depth = self.resize(depth, height, width)
# expected range [0,1], normalize to [-1,1]
do_normalize = self.config.do_normalize
if rgb.min() < 0 and do_normalize:
warnings.warn(
"Passing `image` as torch tensor with value range in [-1,1] is deprecated. The expected value range for image tensor is [0,1] "
f"when passing as pytorch tensor or numpy Array. You passed `image` with value range [{rgb.min()},{rgb.max()}]",
FutureWarning,
)
do_normalize = False
if do_normalize:
rgb = self.normalize(rgb)
depth = self.normalize(depth)
if self.config.do_binarize:
rgb = self.binarize(rgb)
depth = self.binarize(depth)
return rgb, depth
class IPAdapterMaskProcessor(VaeImageProcessor):
"""
Image processor for IP Adapter image masks.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`.
vae_scale_factor (`int`, *optional*, defaults to `8`):
VAE scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of this factor.
resample (`str`, *optional*, defaults to `lanczos`):
Resampling filter to use when resizing the image.
do_normalize (`bool`, *optional*, defaults to `False`):
Whether to normalize the image to [-1,1].
do_binarize (`bool`, *optional*, defaults to `True`):
Whether to binarize the image to 0/1.
do_convert_grayscale (`bool`, *optional*, defaults to be `True`):
Whether to convert the images to grayscale format.
"""
config_name = CONFIG_NAME
@register_to_config
def __init__(
self,
do_resize: bool = True,
vae_scale_factor: int = 8,
resample: str = "lanczos",
do_normalize: bool = False,
do_binarize: bool = True,
do_convert_grayscale: bool = True,
):
super().__init__(
do_resize=do_resize,
vae_scale_factor=vae_scale_factor,
resample=resample,
do_normalize=do_normalize,
do_binarize=do_binarize,
do_convert_grayscale=do_convert_grayscale,
)
@staticmethod
def downsample(mask: torch.FloatTensor, batch_size: int, num_queries: int, value_embed_dim: int):
"""
Downsamples the provided mask tensor to match the expected dimensions for scaled dot-product attention.
If the aspect ratio of the mask does not match the aspect ratio of the output image, a warning is issued.
Args:
mask (`torch.FloatTensor`):
The input mask tensor generated with `IPAdapterMaskProcessor.preprocess()`.
batch_size (`int`):
The batch size.
num_queries (`int`):
The number of queries.
value_embed_dim (`int`):
The dimensionality of the value embeddings.
Returns:
`torch.FloatTensor`:
The downsampled mask tensor.
"""
o_h = mask.shape[1]
o_w = mask.shape[2]
ratio = o_w / o_h
mask_h = int(math.sqrt(num_queries / ratio))
mask_h = int(mask_h) + int((num_queries % int(mask_h)) != 0)
mask_w = num_queries // mask_h
mask_downsample = F.interpolate(mask.unsqueeze(0), size=(mask_h, mask_w), mode="bicubic").squeeze(0)
# Repeat batch_size times
if mask_downsample.shape[0] < batch_size:
mask_downsample = mask_downsample.repeat(batch_size, 1, 1)
mask_downsample = mask_downsample.view(mask_downsample.shape[0], -1)
downsampled_area = mask_h * mask_w
# If the output image and the mask do not have the same aspect ratio, tensor shapes will not match
# Pad tensor if downsampled_mask.shape[1] is smaller than num_queries
if downsampled_area < num_queries:
warnings.warn(
"The aspect ratio of the mask does not match the aspect ratio of the output image. "
"Please update your masks or adjust the output size for optimal performance.",
UserWarning,
)
mask_downsample = F.pad(mask_downsample, (0, num_queries - mask_downsample.shape[1]), value=0.0)
# Discard last embeddings if downsampled_mask.shape[1] is bigger than num_queries
if downsampled_area > num_queries:
warnings.warn(
"The aspect ratio of the mask does not match the aspect ratio of the output image. "
"Please update your masks or adjust the output size for optimal performance.",
UserWarning,
)
mask_downsample = mask_downsample[:, :num_queries]
# Repeat last dimension to match SDPA output shape
mask_downsample = mask_downsample.view(mask_downsample.shape[0], mask_downsample.shape[1], 1).repeat(
1, 1, value_embed_dim
)
return mask_downsample
|