Spaces:
Running
on
Zero
Running
on
Zero
Upload 4 files
Browse files- replace_bg/model/controlnet.py +871 -0
- replace_bg/model/image_processor.py +991 -0
- replace_bg/model/pipeline_controlnet_sd_xl.py +1465 -0
- replace_bg/utilities.py +52 -0
replace_bg/model/controlnet.py
ADDED
@@ -0,0 +1,871 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from dataclasses import dataclass
|
15 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
16 |
+
|
17 |
+
import torch
|
18 |
+
from torch import nn
|
19 |
+
from torch.nn import functional as F
|
20 |
+
|
21 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
22 |
+
from diffusers.loaders import FromOriginalControlNetMixin
|
23 |
+
from diffusers.utils import BaseOutput, logging
|
24 |
+
from diffusers.models.attention_processor import (
|
25 |
+
ADDED_KV_ATTENTION_PROCESSORS,
|
26 |
+
CROSS_ATTENTION_PROCESSORS,
|
27 |
+
AttentionProcessor,
|
28 |
+
AttnAddedKVProcessor,
|
29 |
+
AttnProcessor,
|
30 |
+
)
|
31 |
+
from diffusers.models.embeddings import TextImageProjection, TextImageTimeEmbedding, TextTimeEmbedding, TimestepEmbedding, Timesteps
|
32 |
+
from diffusers.models.modeling_utils import ModelMixin
|
33 |
+
from diffusers.models.unets.unet_2d_blocks import (
|
34 |
+
CrossAttnDownBlock2D,
|
35 |
+
DownBlock2D,
|
36 |
+
UNetMidBlock2D,
|
37 |
+
UNetMidBlock2DCrossAttn,
|
38 |
+
get_down_block,
|
39 |
+
)
|
40 |
+
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
|
41 |
+
|
42 |
+
|
43 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
44 |
+
|
45 |
+
|
46 |
+
@dataclass
|
47 |
+
class ControlNetOutput(BaseOutput):
|
48 |
+
"""
|
49 |
+
The output of [`ControlNetModel`].
|
50 |
+
|
51 |
+
Args:
|
52 |
+
down_block_res_samples (`tuple[torch.Tensor]`):
|
53 |
+
A tuple of downsample activations at different resolutions for each downsampling block. Each tensor should
|
54 |
+
be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be
|
55 |
+
used to condition the original UNet's downsampling activations.
|
56 |
+
mid_down_block_re_sample (`torch.Tensor`):
|
57 |
+
The activation of the midde block (the lowest sample resolution). Each tensor should be of shape
|
58 |
+
`(batch_size, channel * lowest_resolution, height // lowest_resolution, width // lowest_resolution)`.
|
59 |
+
Output can be used to condition the original UNet's middle block activation.
|
60 |
+
"""
|
61 |
+
|
62 |
+
down_block_res_samples: Tuple[torch.Tensor]
|
63 |
+
mid_block_res_sample: torch.Tensor
|
64 |
+
|
65 |
+
|
66 |
+
class ControlNetConditioningEmbedding(nn.Module):
|
67 |
+
"""
|
68 |
+
Quoting from https://arxiv.org/abs/2302.05543: "Stable Diffusion uses a pre-processing method similar to VQ-GAN
|
69 |
+
[11] to convert the entire dataset of 512 × 512 images into smaller 64 × 64 “latent images” for stabilized
|
70 |
+
training. This requires ControlNets to convert image-based conditions to 64 × 64 feature space to match the
|
71 |
+
convolution size. We use a tiny network E(·) of four convolution layers with 4 × 4 kernels and 2 × 2 strides
|
72 |
+
(activated by ReLU, channels are 16, 32, 64, 128, initialized with Gaussian weights, trained jointly with the full
|
73 |
+
model) to encode image-space conditions ... into feature maps ..."
|
74 |
+
"""
|
75 |
+
|
76 |
+
def __init__(
|
77 |
+
self,
|
78 |
+
conditioning_embedding_channels: int,
|
79 |
+
conditioning_channels: int = 5, #update to 5
|
80 |
+
block_out_channels: Tuple[int, ...] = (16, 32, 96, 256),
|
81 |
+
):
|
82 |
+
super().__init__()
|
83 |
+
|
84 |
+
self.conv_in = nn.Conv2d(conditioning_channels, block_out_channels[0], kernel_size=3, padding=1)
|
85 |
+
|
86 |
+
self.blocks = nn.ModuleList([])
|
87 |
+
|
88 |
+
for i in range(len(block_out_channels) - 1):
|
89 |
+
channel_in = block_out_channels[i]
|
90 |
+
channel_out = block_out_channels[i + 1]
|
91 |
+
self.blocks.append(nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1))
|
92 |
+
self.blocks.append(nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=1)) # update to 1
|
93 |
+
|
94 |
+
self.conv_out = zero_module(
|
95 |
+
nn.Conv2d(block_out_channels[-1], conditioning_embedding_channels, kernel_size=3, padding=1)
|
96 |
+
)
|
97 |
+
|
98 |
+
def forward(self, conditioning):
|
99 |
+
embedding = self.conv_in(conditioning)
|
100 |
+
embedding = F.silu(embedding)
|
101 |
+
|
102 |
+
for block in self.blocks:
|
103 |
+
embedding = block(embedding)
|
104 |
+
embedding = F.silu(embedding)
|
105 |
+
|
106 |
+
embedding = self.conv_out(embedding)
|
107 |
+
|
108 |
+
return embedding
|
109 |
+
|
110 |
+
|
111 |
+
class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlNetMixin):
|
112 |
+
"""
|
113 |
+
A ControlNet model.
|
114 |
+
|
115 |
+
Args:
|
116 |
+
in_channels (`int`, defaults to 4):
|
117 |
+
The number of channels in the input sample.
|
118 |
+
flip_sin_to_cos (`bool`, defaults to `True`):
|
119 |
+
Whether to flip the sin to cos in the time embedding.
|
120 |
+
freq_shift (`int`, defaults to 0):
|
121 |
+
The frequency shift to apply to the time embedding.
|
122 |
+
down_block_types (`tuple[str]`, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
123 |
+
The tuple of downsample blocks to use.
|
124 |
+
only_cross_attention (`Union[bool, Tuple[bool]]`, defaults to `False`):
|
125 |
+
block_out_channels (`tuple[int]`, defaults to `(320, 640, 1280, 1280)`):
|
126 |
+
The tuple of output channels for each block.
|
127 |
+
layers_per_block (`int`, defaults to 2):
|
128 |
+
The number of layers per block.
|
129 |
+
downsample_padding (`int`, defaults to 1):
|
130 |
+
The padding to use for the downsampling convolution.
|
131 |
+
mid_block_scale_factor (`float`, defaults to 1):
|
132 |
+
The scale factor to use for the mid block.
|
133 |
+
act_fn (`str`, defaults to "silu"):
|
134 |
+
The activation function to use.
|
135 |
+
norm_num_groups (`int`, *optional*, defaults to 32):
|
136 |
+
The number of groups to use for the normalization. If None, normalization and activation layers is skipped
|
137 |
+
in post-processing.
|
138 |
+
norm_eps (`float`, defaults to 1e-5):
|
139 |
+
The epsilon to use for the normalization.
|
140 |
+
cross_attention_dim (`int`, defaults to 1280):
|
141 |
+
The dimension of the cross attention features.
|
142 |
+
transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
|
143 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
144 |
+
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
145 |
+
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
146 |
+
encoder_hid_dim (`int`, *optional*, defaults to None):
|
147 |
+
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
|
148 |
+
dimension to `cross_attention_dim`.
|
149 |
+
encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
|
150 |
+
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
|
151 |
+
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
|
152 |
+
attention_head_dim (`Union[int, Tuple[int]]`, defaults to 8):
|
153 |
+
The dimension of the attention heads.
|
154 |
+
use_linear_projection (`bool`, defaults to `False`):
|
155 |
+
class_embed_type (`str`, *optional*, defaults to `None`):
|
156 |
+
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from None,
|
157 |
+
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
|
158 |
+
addition_embed_type (`str`, *optional*, defaults to `None`):
|
159 |
+
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
|
160 |
+
"text". "text" will use the `TextTimeEmbedding` layer.
|
161 |
+
num_class_embeds (`int`, *optional*, defaults to 0):
|
162 |
+
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
|
163 |
+
class conditioning with `class_embed_type` equal to `None`.
|
164 |
+
upcast_attention (`bool`, defaults to `False`):
|
165 |
+
resnet_time_scale_shift (`str`, defaults to `"default"`):
|
166 |
+
Time scale shift config for ResNet blocks (see `ResnetBlock2D`). Choose from `default` or `scale_shift`.
|
167 |
+
projection_class_embeddings_input_dim (`int`, *optional*, defaults to `None`):
|
168 |
+
The dimension of the `class_labels` input when `class_embed_type="projection"`. Required when
|
169 |
+
`class_embed_type="projection"`.
|
170 |
+
controlnet_conditioning_channel_order (`str`, defaults to `"rgb"`):
|
171 |
+
The channel order of conditional image. Will convert to `rgb` if it's `bgr`.
|
172 |
+
conditioning_embedding_out_channels (`tuple[int]`, *optional*, defaults to `(16, 32, 96, 256)`):
|
173 |
+
The tuple of output channel for each block in the `conditioning_embedding` layer.
|
174 |
+
global_pool_conditions (`bool`, defaults to `False`):
|
175 |
+
TODO(Patrick) - unused parameter.
|
176 |
+
addition_embed_type_num_heads (`int`, defaults to 64):
|
177 |
+
The number of heads to use for the `TextTimeEmbedding` layer.
|
178 |
+
"""
|
179 |
+
|
180 |
+
_supports_gradient_checkpointing = True
|
181 |
+
|
182 |
+
@register_to_config
|
183 |
+
def __init__(
|
184 |
+
self,
|
185 |
+
in_channels: int = 4,
|
186 |
+
conditioning_channels: int = 3,
|
187 |
+
flip_sin_to_cos: bool = True,
|
188 |
+
freq_shift: int = 0,
|
189 |
+
down_block_types: Tuple[str, ...] = (
|
190 |
+
"CrossAttnDownBlock2D",
|
191 |
+
"CrossAttnDownBlock2D",
|
192 |
+
"CrossAttnDownBlock2D",
|
193 |
+
"DownBlock2D",
|
194 |
+
),
|
195 |
+
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
|
196 |
+
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
197 |
+
block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280),
|
198 |
+
layers_per_block: int = 2,
|
199 |
+
downsample_padding: int = 1,
|
200 |
+
mid_block_scale_factor: float = 1,
|
201 |
+
act_fn: str = "silu",
|
202 |
+
norm_num_groups: Optional[int] = 32,
|
203 |
+
norm_eps: float = 1e-5,
|
204 |
+
cross_attention_dim: int = 1280,
|
205 |
+
transformer_layers_per_block: Union[int, Tuple[int, ...]] = 1,
|
206 |
+
encoder_hid_dim: Optional[int] = None,
|
207 |
+
encoder_hid_dim_type: Optional[str] = None,
|
208 |
+
attention_head_dim: Union[int, Tuple[int, ...]] = 8,
|
209 |
+
num_attention_heads: Optional[Union[int, Tuple[int, ...]]] = None,
|
210 |
+
use_linear_projection: bool = False,
|
211 |
+
class_embed_type: Optional[str] = None,
|
212 |
+
addition_embed_type: Optional[str] = None,
|
213 |
+
addition_time_embed_dim: Optional[int] = None,
|
214 |
+
num_class_embeds: Optional[int] = None,
|
215 |
+
upcast_attention: bool = False,
|
216 |
+
resnet_time_scale_shift: str = "default",
|
217 |
+
projection_class_embeddings_input_dim: Optional[int] = None,
|
218 |
+
controlnet_conditioning_channel_order: str = "rgb",
|
219 |
+
conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256),
|
220 |
+
global_pool_conditions: bool = False,
|
221 |
+
addition_embed_type_num_heads: int = 64,
|
222 |
+
):
|
223 |
+
super().__init__()
|
224 |
+
|
225 |
+
# If `num_attention_heads` is not defined (which is the case for most models)
|
226 |
+
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
|
227 |
+
# The reason for this behavior is to correct for incorrectly named variables that were introduced
|
228 |
+
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
|
229 |
+
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
|
230 |
+
# which is why we correct for the naming here.
|
231 |
+
num_attention_heads = num_attention_heads or attention_head_dim
|
232 |
+
|
233 |
+
# Check inputs
|
234 |
+
if len(block_out_channels) != len(down_block_types):
|
235 |
+
raise ValueError(
|
236 |
+
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
237 |
+
)
|
238 |
+
|
239 |
+
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
|
240 |
+
raise ValueError(
|
241 |
+
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
|
242 |
+
)
|
243 |
+
|
244 |
+
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
|
245 |
+
raise ValueError(
|
246 |
+
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
247 |
+
)
|
248 |
+
|
249 |
+
if isinstance(transformer_layers_per_block, int):
|
250 |
+
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
|
251 |
+
|
252 |
+
# input
|
253 |
+
conv_in_kernel = 3
|
254 |
+
conv_in_padding = (conv_in_kernel - 1) // 2
|
255 |
+
self.conv_in = nn.Conv2d(
|
256 |
+
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
|
257 |
+
)
|
258 |
+
|
259 |
+
# time
|
260 |
+
time_embed_dim = block_out_channels[0] * 4
|
261 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
262 |
+
timestep_input_dim = block_out_channels[0]
|
263 |
+
self.time_embedding = TimestepEmbedding(
|
264 |
+
timestep_input_dim,
|
265 |
+
time_embed_dim,
|
266 |
+
act_fn=act_fn,
|
267 |
+
)
|
268 |
+
|
269 |
+
if encoder_hid_dim_type is None and encoder_hid_dim is not None:
|
270 |
+
encoder_hid_dim_type = "text_proj"
|
271 |
+
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
|
272 |
+
logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
|
273 |
+
|
274 |
+
if encoder_hid_dim is None and encoder_hid_dim_type is not None:
|
275 |
+
raise ValueError(
|
276 |
+
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
|
277 |
+
)
|
278 |
+
|
279 |
+
if encoder_hid_dim_type == "text_proj":
|
280 |
+
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
|
281 |
+
elif encoder_hid_dim_type == "text_image_proj":
|
282 |
+
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
283 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
284 |
+
# case when `addition_embed_type == "text_image_proj"` (Kandinsky 2.1)`
|
285 |
+
self.encoder_hid_proj = TextImageProjection(
|
286 |
+
text_embed_dim=encoder_hid_dim,
|
287 |
+
image_embed_dim=cross_attention_dim,
|
288 |
+
cross_attention_dim=cross_attention_dim,
|
289 |
+
)
|
290 |
+
|
291 |
+
elif encoder_hid_dim_type is not None:
|
292 |
+
raise ValueError(
|
293 |
+
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
|
294 |
+
)
|
295 |
+
else:
|
296 |
+
self.encoder_hid_proj = None
|
297 |
+
|
298 |
+
# class embedding
|
299 |
+
if class_embed_type is None and num_class_embeds is not None:
|
300 |
+
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
301 |
+
elif class_embed_type == "timestep":
|
302 |
+
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
|
303 |
+
elif class_embed_type == "identity":
|
304 |
+
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
305 |
+
elif class_embed_type == "projection":
|
306 |
+
if projection_class_embeddings_input_dim is None:
|
307 |
+
raise ValueError(
|
308 |
+
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
|
309 |
+
)
|
310 |
+
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
|
311 |
+
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
|
312 |
+
# 2. it projects from an arbitrary input dimension.
|
313 |
+
#
|
314 |
+
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
|
315 |
+
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
|
316 |
+
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
|
317 |
+
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
318 |
+
else:
|
319 |
+
self.class_embedding = None
|
320 |
+
|
321 |
+
if addition_embed_type == "text":
|
322 |
+
if encoder_hid_dim is not None:
|
323 |
+
text_time_embedding_from_dim = encoder_hid_dim
|
324 |
+
else:
|
325 |
+
text_time_embedding_from_dim = cross_attention_dim
|
326 |
+
|
327 |
+
self.add_embedding = TextTimeEmbedding(
|
328 |
+
text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
|
329 |
+
)
|
330 |
+
elif addition_embed_type == "text_image":
|
331 |
+
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
332 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
333 |
+
# case when `addition_embed_type == "text_image"` (Kandinsky 2.1)`
|
334 |
+
self.add_embedding = TextImageTimeEmbedding(
|
335 |
+
text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
|
336 |
+
)
|
337 |
+
elif addition_embed_type == "text_time":
|
338 |
+
self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
|
339 |
+
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
340 |
+
|
341 |
+
elif addition_embed_type is not None:
|
342 |
+
raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
|
343 |
+
|
344 |
+
# control net conditioning embedding
|
345 |
+
self.controlnet_cond_embedding = ControlNetConditioningEmbedding(
|
346 |
+
conditioning_embedding_channels=block_out_channels[0],
|
347 |
+
block_out_channels=conditioning_embedding_out_channels,
|
348 |
+
conditioning_channels=conditioning_channels,
|
349 |
+
)
|
350 |
+
|
351 |
+
self.down_blocks = nn.ModuleList([])
|
352 |
+
self.controlnet_down_blocks = nn.ModuleList([])
|
353 |
+
|
354 |
+
if isinstance(only_cross_attention, bool):
|
355 |
+
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
356 |
+
|
357 |
+
if isinstance(attention_head_dim, int):
|
358 |
+
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
359 |
+
|
360 |
+
if isinstance(num_attention_heads, int):
|
361 |
+
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
362 |
+
|
363 |
+
# down
|
364 |
+
output_channel = block_out_channels[0]
|
365 |
+
|
366 |
+
controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
|
367 |
+
controlnet_block = zero_module(controlnet_block)
|
368 |
+
self.controlnet_down_blocks.append(controlnet_block)
|
369 |
+
|
370 |
+
for i, down_block_type in enumerate(down_block_types):
|
371 |
+
input_channel = output_channel
|
372 |
+
output_channel = block_out_channels[i]
|
373 |
+
is_final_block = i == len(block_out_channels) - 1
|
374 |
+
|
375 |
+
down_block = get_down_block(
|
376 |
+
down_block_type,
|
377 |
+
num_layers=layers_per_block,
|
378 |
+
transformer_layers_per_block=transformer_layers_per_block[i],
|
379 |
+
in_channels=input_channel,
|
380 |
+
out_channels=output_channel,
|
381 |
+
temb_channels=time_embed_dim,
|
382 |
+
add_downsample=not is_final_block,
|
383 |
+
resnet_eps=norm_eps,
|
384 |
+
resnet_act_fn=act_fn,
|
385 |
+
resnet_groups=norm_num_groups,
|
386 |
+
cross_attention_dim=cross_attention_dim,
|
387 |
+
num_attention_heads=num_attention_heads[i],
|
388 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
389 |
+
downsample_padding=downsample_padding,
|
390 |
+
use_linear_projection=use_linear_projection,
|
391 |
+
only_cross_attention=only_cross_attention[i],
|
392 |
+
upcast_attention=upcast_attention,
|
393 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
394 |
+
)
|
395 |
+
self.down_blocks.append(down_block)
|
396 |
+
|
397 |
+
for _ in range(layers_per_block):
|
398 |
+
controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
|
399 |
+
controlnet_block = zero_module(controlnet_block)
|
400 |
+
self.controlnet_down_blocks.append(controlnet_block)
|
401 |
+
|
402 |
+
if not is_final_block:
|
403 |
+
controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
|
404 |
+
controlnet_block = zero_module(controlnet_block)
|
405 |
+
self.controlnet_down_blocks.append(controlnet_block)
|
406 |
+
|
407 |
+
# mid
|
408 |
+
mid_block_channel = block_out_channels[-1]
|
409 |
+
|
410 |
+
controlnet_block = nn.Conv2d(mid_block_channel, mid_block_channel, kernel_size=1)
|
411 |
+
controlnet_block = zero_module(controlnet_block)
|
412 |
+
self.controlnet_mid_block = controlnet_block
|
413 |
+
|
414 |
+
if mid_block_type == "UNetMidBlock2DCrossAttn":
|
415 |
+
self.mid_block = UNetMidBlock2DCrossAttn(
|
416 |
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
417 |
+
in_channels=mid_block_channel,
|
418 |
+
temb_channels=time_embed_dim,
|
419 |
+
resnet_eps=norm_eps,
|
420 |
+
resnet_act_fn=act_fn,
|
421 |
+
output_scale_factor=mid_block_scale_factor,
|
422 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
423 |
+
cross_attention_dim=cross_attention_dim,
|
424 |
+
num_attention_heads=num_attention_heads[-1],
|
425 |
+
resnet_groups=norm_num_groups,
|
426 |
+
use_linear_projection=use_linear_projection,
|
427 |
+
upcast_attention=upcast_attention,
|
428 |
+
)
|
429 |
+
elif mid_block_type == "UNetMidBlock2D":
|
430 |
+
self.mid_block = UNetMidBlock2D(
|
431 |
+
in_channels=block_out_channels[-1],
|
432 |
+
temb_channels=time_embed_dim,
|
433 |
+
num_layers=0,
|
434 |
+
resnet_eps=norm_eps,
|
435 |
+
resnet_act_fn=act_fn,
|
436 |
+
output_scale_factor=mid_block_scale_factor,
|
437 |
+
resnet_groups=norm_num_groups,
|
438 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
439 |
+
add_attention=False,
|
440 |
+
)
|
441 |
+
else:
|
442 |
+
raise ValueError(f"unknown mid_block_type : {mid_block_type}")
|
443 |
+
|
444 |
+
@classmethod
|
445 |
+
def from_unet(
|
446 |
+
cls,
|
447 |
+
unet: UNet2DConditionModel,
|
448 |
+
controlnet_conditioning_channel_order: str = "rgb",
|
449 |
+
conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256),
|
450 |
+
load_weights_from_unet: bool = True,
|
451 |
+
conditioning_channels: int = 3,
|
452 |
+
):
|
453 |
+
r"""
|
454 |
+
Instantiate a [`ControlNetModel`] from [`UNet2DConditionModel`].
|
455 |
+
|
456 |
+
Parameters:
|
457 |
+
unet (`UNet2DConditionModel`):
|
458 |
+
The UNet model weights to copy to the [`ControlNetModel`]. All configuration options are also copied
|
459 |
+
where applicable.
|
460 |
+
"""
|
461 |
+
transformer_layers_per_block = (
|
462 |
+
unet.config.transformer_layers_per_block if "transformer_layers_per_block" in unet.config else 1
|
463 |
+
)
|
464 |
+
encoder_hid_dim = unet.config.encoder_hid_dim if "encoder_hid_dim" in unet.config else None
|
465 |
+
encoder_hid_dim_type = unet.config.encoder_hid_dim_type if "encoder_hid_dim_type" in unet.config else None
|
466 |
+
addition_embed_type = unet.config.addition_embed_type if "addition_embed_type" in unet.config else None
|
467 |
+
addition_time_embed_dim = (
|
468 |
+
unet.config.addition_time_embed_dim if "addition_time_embed_dim" in unet.config else None
|
469 |
+
)
|
470 |
+
|
471 |
+
controlnet = cls(
|
472 |
+
encoder_hid_dim=encoder_hid_dim,
|
473 |
+
encoder_hid_dim_type=encoder_hid_dim_type,
|
474 |
+
addition_embed_type=addition_embed_type,
|
475 |
+
addition_time_embed_dim=addition_time_embed_dim,
|
476 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
477 |
+
in_channels=unet.config.in_channels,
|
478 |
+
flip_sin_to_cos=unet.config.flip_sin_to_cos,
|
479 |
+
freq_shift=unet.config.freq_shift,
|
480 |
+
down_block_types=unet.config.down_block_types,
|
481 |
+
only_cross_attention=unet.config.only_cross_attention,
|
482 |
+
block_out_channels=unet.config.block_out_channels,
|
483 |
+
layers_per_block=unet.config.layers_per_block,
|
484 |
+
downsample_padding=unet.config.downsample_padding,
|
485 |
+
mid_block_scale_factor=unet.config.mid_block_scale_factor,
|
486 |
+
act_fn=unet.config.act_fn,
|
487 |
+
norm_num_groups=unet.config.norm_num_groups,
|
488 |
+
norm_eps=unet.config.norm_eps,
|
489 |
+
cross_attention_dim=unet.config.cross_attention_dim,
|
490 |
+
attention_head_dim=unet.config.attention_head_dim,
|
491 |
+
num_attention_heads=unet.config.num_attention_heads,
|
492 |
+
use_linear_projection=unet.config.use_linear_projection,
|
493 |
+
class_embed_type=unet.config.class_embed_type,
|
494 |
+
num_class_embeds=unet.config.num_class_embeds,
|
495 |
+
upcast_attention=unet.config.upcast_attention,
|
496 |
+
resnet_time_scale_shift=unet.config.resnet_time_scale_shift,
|
497 |
+
projection_class_embeddings_input_dim=unet.config.projection_class_embeddings_input_dim,
|
498 |
+
mid_block_type=unet.config.mid_block_type,
|
499 |
+
controlnet_conditioning_channel_order=controlnet_conditioning_channel_order,
|
500 |
+
conditioning_embedding_out_channels=conditioning_embedding_out_channels,
|
501 |
+
conditioning_channels=conditioning_channels,
|
502 |
+
)
|
503 |
+
|
504 |
+
if load_weights_from_unet:
|
505 |
+
controlnet.conv_in.load_state_dict(unet.conv_in.state_dict())
|
506 |
+
controlnet.time_proj.load_state_dict(unet.time_proj.state_dict())
|
507 |
+
controlnet.time_embedding.load_state_dict(unet.time_embedding.state_dict())
|
508 |
+
|
509 |
+
if controlnet.class_embedding:
|
510 |
+
controlnet.class_embedding.load_state_dict(unet.class_embedding.state_dict())
|
511 |
+
|
512 |
+
if hasattr(controlnet, "add_embedding"):
|
513 |
+
controlnet.add_embedding.load_state_dict(unet.add_embedding.state_dict())
|
514 |
+
|
515 |
+
controlnet.down_blocks.load_state_dict(unet.down_blocks.state_dict())
|
516 |
+
controlnet.mid_block.load_state_dict(unet.mid_block.state_dict())
|
517 |
+
|
518 |
+
return controlnet
|
519 |
+
|
520 |
+
@property
|
521 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
522 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
523 |
+
r"""
|
524 |
+
Returns:
|
525 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
526 |
+
indexed by its weight name.
|
527 |
+
"""
|
528 |
+
# set recursively
|
529 |
+
processors = {}
|
530 |
+
|
531 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
532 |
+
if hasattr(module, "get_processor"):
|
533 |
+
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
|
534 |
+
|
535 |
+
for sub_name, child in module.named_children():
|
536 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
537 |
+
|
538 |
+
return processors
|
539 |
+
|
540 |
+
for name, module in self.named_children():
|
541 |
+
fn_recursive_add_processors(name, module, processors)
|
542 |
+
|
543 |
+
return processors
|
544 |
+
|
545 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
546 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
547 |
+
r"""
|
548 |
+
Sets the attention processor to use to compute attention.
|
549 |
+
|
550 |
+
Parameters:
|
551 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
552 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
553 |
+
for **all** `Attention` layers.
|
554 |
+
|
555 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
556 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
557 |
+
|
558 |
+
"""
|
559 |
+
count = len(self.attn_processors.keys())
|
560 |
+
|
561 |
+
if isinstance(processor, dict) and len(processor) != count:
|
562 |
+
raise ValueError(
|
563 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
564 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
565 |
+
)
|
566 |
+
|
567 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
568 |
+
if hasattr(module, "set_processor"):
|
569 |
+
if not isinstance(processor, dict):
|
570 |
+
module.set_processor(processor)
|
571 |
+
else:
|
572 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
573 |
+
|
574 |
+
for sub_name, child in module.named_children():
|
575 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
576 |
+
|
577 |
+
for name, module in self.named_children():
|
578 |
+
fn_recursive_attn_processor(name, module, processor)
|
579 |
+
|
580 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
|
581 |
+
def set_default_attn_processor(self):
|
582 |
+
"""
|
583 |
+
Disables custom attention processors and sets the default attention implementation.
|
584 |
+
"""
|
585 |
+
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
586 |
+
processor = AttnAddedKVProcessor()
|
587 |
+
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
588 |
+
processor = AttnProcessor()
|
589 |
+
else:
|
590 |
+
raise ValueError(
|
591 |
+
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
592 |
+
)
|
593 |
+
|
594 |
+
self.set_attn_processor(processor)
|
595 |
+
|
596 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attention_slice
|
597 |
+
def set_attention_slice(self, slice_size: Union[str, int, List[int]]) -> None:
|
598 |
+
r"""
|
599 |
+
Enable sliced attention computation.
|
600 |
+
|
601 |
+
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
|
602 |
+
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
|
603 |
+
|
604 |
+
Args:
|
605 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
606 |
+
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
|
607 |
+
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
|
608 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
609 |
+
must be a multiple of `slice_size`.
|
610 |
+
"""
|
611 |
+
sliceable_head_dims = []
|
612 |
+
|
613 |
+
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
|
614 |
+
if hasattr(module, "set_attention_slice"):
|
615 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
616 |
+
|
617 |
+
for child in module.children():
|
618 |
+
fn_recursive_retrieve_sliceable_dims(child)
|
619 |
+
|
620 |
+
# retrieve number of attention layers
|
621 |
+
for module in self.children():
|
622 |
+
fn_recursive_retrieve_sliceable_dims(module)
|
623 |
+
|
624 |
+
num_sliceable_layers = len(sliceable_head_dims)
|
625 |
+
|
626 |
+
if slice_size == "auto":
|
627 |
+
# half the attention head size is usually a good trade-off between
|
628 |
+
# speed and memory
|
629 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
630 |
+
elif slice_size == "max":
|
631 |
+
# make smallest slice possible
|
632 |
+
slice_size = num_sliceable_layers * [1]
|
633 |
+
|
634 |
+
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
635 |
+
|
636 |
+
if len(slice_size) != len(sliceable_head_dims):
|
637 |
+
raise ValueError(
|
638 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
639 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
640 |
+
)
|
641 |
+
|
642 |
+
for i in range(len(slice_size)):
|
643 |
+
size = slice_size[i]
|
644 |
+
dim = sliceable_head_dims[i]
|
645 |
+
if size is not None and size > dim:
|
646 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
647 |
+
|
648 |
+
# Recursively walk through all the children.
|
649 |
+
# Any children which exposes the set_attention_slice method
|
650 |
+
# gets the message
|
651 |
+
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
652 |
+
if hasattr(module, "set_attention_slice"):
|
653 |
+
module.set_attention_slice(slice_size.pop())
|
654 |
+
|
655 |
+
for child in module.children():
|
656 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
657 |
+
|
658 |
+
reversed_slice_size = list(reversed(slice_size))
|
659 |
+
for module in self.children():
|
660 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
661 |
+
|
662 |
+
def _set_gradient_checkpointing(self, module, value: bool = False) -> None:
|
663 |
+
if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D)):
|
664 |
+
module.gradient_checkpointing = value
|
665 |
+
|
666 |
+
def forward(
|
667 |
+
self,
|
668 |
+
sample: torch.FloatTensor,
|
669 |
+
timestep: Union[torch.Tensor, float, int],
|
670 |
+
encoder_hidden_states: torch.Tensor,
|
671 |
+
controlnet_cond: torch.FloatTensor,
|
672 |
+
conditioning_scale: float = 1.0,
|
673 |
+
class_labels: Optional[torch.Tensor] = None,
|
674 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
675 |
+
attention_mask: Optional[torch.Tensor] = None,
|
676 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
677 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
678 |
+
guess_mode: bool = False,
|
679 |
+
return_dict: bool = True,
|
680 |
+
) -> Union[ControlNetOutput, Tuple[Tuple[torch.FloatTensor, ...], torch.FloatTensor]]:
|
681 |
+
"""
|
682 |
+
The [`ControlNetModel`] forward method.
|
683 |
+
|
684 |
+
Args:
|
685 |
+
sample (`torch.FloatTensor`):
|
686 |
+
The noisy input tensor.
|
687 |
+
timestep (`Union[torch.Tensor, float, int]`):
|
688 |
+
The number of timesteps to denoise an input.
|
689 |
+
encoder_hidden_states (`torch.Tensor`):
|
690 |
+
The encoder hidden states.
|
691 |
+
controlnet_cond (`torch.FloatTensor`):
|
692 |
+
The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
|
693 |
+
conditioning_scale (`float`, defaults to `1.0`):
|
694 |
+
The scale factor for ControlNet outputs.
|
695 |
+
class_labels (`torch.Tensor`, *optional*, defaults to `None`):
|
696 |
+
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
|
697 |
+
timestep_cond (`torch.Tensor`, *optional*, defaults to `None`):
|
698 |
+
Additional conditional embeddings for timestep. If provided, the embeddings will be summed with the
|
699 |
+
timestep_embedding passed through the `self.time_embedding` layer to obtain the final timestep
|
700 |
+
embeddings.
|
701 |
+
attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
|
702 |
+
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
703 |
+
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
704 |
+
negative values to the attention scores corresponding to "discard" tokens.
|
705 |
+
added_cond_kwargs (`dict`):
|
706 |
+
Additional conditions for the Stable Diffusion XL UNet.
|
707 |
+
cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`):
|
708 |
+
A kwargs dictionary that if specified is passed along to the `AttnProcessor`.
|
709 |
+
guess_mode (`bool`, defaults to `False`):
|
710 |
+
In this mode, the ControlNet encoder tries its best to recognize the input content of the input even if
|
711 |
+
you remove all prompts. A `guidance_scale` between 3.0 and 5.0 is recommended.
|
712 |
+
return_dict (`bool`, defaults to `True`):
|
713 |
+
Whether or not to return a [`~models.controlnet.ControlNetOutput`] instead of a plain tuple.
|
714 |
+
|
715 |
+
Returns:
|
716 |
+
[`~models.controlnet.ControlNetOutput`] **or** `tuple`:
|
717 |
+
If `return_dict` is `True`, a [`~models.controlnet.ControlNetOutput`] is returned, otherwise a tuple is
|
718 |
+
returned where the first element is the sample tensor.
|
719 |
+
"""
|
720 |
+
# check channel order
|
721 |
+
channel_order = self.config.controlnet_conditioning_channel_order
|
722 |
+
|
723 |
+
if channel_order == "rgb":
|
724 |
+
# in rgb order by default
|
725 |
+
...
|
726 |
+
elif channel_order == "bgr":
|
727 |
+
controlnet_cond = torch.flip(controlnet_cond, dims=[1])
|
728 |
+
else:
|
729 |
+
raise ValueError(f"unknown `controlnet_conditioning_channel_order`: {channel_order}")
|
730 |
+
|
731 |
+
# prepare attention_mask
|
732 |
+
if attention_mask is not None:
|
733 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
734 |
+
attention_mask = attention_mask.unsqueeze(1)
|
735 |
+
|
736 |
+
# 1. time
|
737 |
+
timesteps = timestep
|
738 |
+
if not torch.is_tensor(timesteps):
|
739 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
740 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
741 |
+
is_mps = sample.device.type == "mps"
|
742 |
+
if isinstance(timestep, float):
|
743 |
+
dtype = torch.float32 if is_mps else torch.float64
|
744 |
+
else:
|
745 |
+
dtype = torch.int32 if is_mps else torch.int64
|
746 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
747 |
+
elif len(timesteps.shape) == 0:
|
748 |
+
timesteps = timesteps[None].to(sample.device)
|
749 |
+
|
750 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
751 |
+
timesteps = timesteps.expand(sample.shape[0])
|
752 |
+
|
753 |
+
t_emb = self.time_proj(timesteps)
|
754 |
+
|
755 |
+
# timesteps does not contain any weights and will always return f32 tensors
|
756 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
757 |
+
# there might be better ways to encapsulate this.
|
758 |
+
t_emb = t_emb.to(dtype=sample.dtype)
|
759 |
+
|
760 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
761 |
+
aug_emb = None
|
762 |
+
|
763 |
+
if self.class_embedding is not None:
|
764 |
+
if class_labels is None:
|
765 |
+
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
766 |
+
|
767 |
+
if self.config.class_embed_type == "timestep":
|
768 |
+
class_labels = self.time_proj(class_labels)
|
769 |
+
|
770 |
+
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
|
771 |
+
emb = emb + class_emb
|
772 |
+
|
773 |
+
if self.config.addition_embed_type is not None:
|
774 |
+
if self.config.addition_embed_type == "text":
|
775 |
+
aug_emb = self.add_embedding(encoder_hidden_states)
|
776 |
+
|
777 |
+
elif self.config.addition_embed_type == "text_time":
|
778 |
+
if "text_embeds" not in added_cond_kwargs:
|
779 |
+
raise ValueError(
|
780 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
|
781 |
+
)
|
782 |
+
text_embeds = added_cond_kwargs.get("text_embeds")
|
783 |
+
if "time_ids" not in added_cond_kwargs:
|
784 |
+
raise ValueError(
|
785 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
|
786 |
+
)
|
787 |
+
time_ids = added_cond_kwargs.get("time_ids")
|
788 |
+
time_embeds = self.add_time_proj(time_ids.flatten())
|
789 |
+
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
790 |
+
|
791 |
+
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
792 |
+
add_embeds = add_embeds.to(emb.dtype)
|
793 |
+
aug_emb = self.add_embedding(add_embeds)
|
794 |
+
|
795 |
+
emb = emb + aug_emb if aug_emb is not None else emb
|
796 |
+
|
797 |
+
# 2. pre-process
|
798 |
+
sample = self.conv_in(sample)
|
799 |
+
|
800 |
+
controlnet_cond = self.controlnet_cond_embedding(controlnet_cond)
|
801 |
+
sample = sample + controlnet_cond
|
802 |
+
|
803 |
+
# 3. down
|
804 |
+
down_block_res_samples = (sample,)
|
805 |
+
for downsample_block in self.down_blocks:
|
806 |
+
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
807 |
+
sample, res_samples = downsample_block(
|
808 |
+
hidden_states=sample,
|
809 |
+
temb=emb,
|
810 |
+
encoder_hidden_states=encoder_hidden_states,
|
811 |
+
attention_mask=attention_mask,
|
812 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
813 |
+
)
|
814 |
+
else:
|
815 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
816 |
+
|
817 |
+
down_block_res_samples += res_samples
|
818 |
+
|
819 |
+
# 4. mid
|
820 |
+
if self.mid_block is not None:
|
821 |
+
if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
|
822 |
+
sample = self.mid_block(
|
823 |
+
sample,
|
824 |
+
emb,
|
825 |
+
encoder_hidden_states=encoder_hidden_states,
|
826 |
+
attention_mask=attention_mask,
|
827 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
828 |
+
)
|
829 |
+
else:
|
830 |
+
sample = self.mid_block(sample, emb)
|
831 |
+
|
832 |
+
# 5. Control net blocks
|
833 |
+
|
834 |
+
controlnet_down_block_res_samples = ()
|
835 |
+
|
836 |
+
for down_block_res_sample, controlnet_block in zip(down_block_res_samples, self.controlnet_down_blocks):
|
837 |
+
down_block_res_sample = controlnet_block(down_block_res_sample)
|
838 |
+
controlnet_down_block_res_samples = controlnet_down_block_res_samples + (down_block_res_sample,)
|
839 |
+
|
840 |
+
down_block_res_samples = controlnet_down_block_res_samples
|
841 |
+
|
842 |
+
mid_block_res_sample = self.controlnet_mid_block(sample)
|
843 |
+
|
844 |
+
# 6. scaling
|
845 |
+
if guess_mode and not self.config.global_pool_conditions:
|
846 |
+
scales = torch.logspace(-1, 0, len(down_block_res_samples) + 1, device=sample.device) # 0.1 to 1.0
|
847 |
+
scales = scales * conditioning_scale
|
848 |
+
down_block_res_samples = [sample * scale for sample, scale in zip(down_block_res_samples, scales)]
|
849 |
+
mid_block_res_sample = mid_block_res_sample * scales[-1] # last one
|
850 |
+
else:
|
851 |
+
down_block_res_samples = [sample * conditioning_scale for sample in down_block_res_samples]
|
852 |
+
mid_block_res_sample = mid_block_res_sample * conditioning_scale
|
853 |
+
|
854 |
+
if self.config.global_pool_conditions:
|
855 |
+
down_block_res_samples = [
|
856 |
+
torch.mean(sample, dim=(2, 3), keepdim=True) for sample in down_block_res_samples
|
857 |
+
]
|
858 |
+
mid_block_res_sample = torch.mean(mid_block_res_sample, dim=(2, 3), keepdim=True)
|
859 |
+
|
860 |
+
if not return_dict:
|
861 |
+
return (down_block_res_samples, mid_block_res_sample)
|
862 |
+
|
863 |
+
return ControlNetOutput(
|
864 |
+
down_block_res_samples=down_block_res_samples, mid_block_res_sample=mid_block_res_sample
|
865 |
+
)
|
866 |
+
|
867 |
+
|
868 |
+
def zero_module(module):
|
869 |
+
for p in module.parameters():
|
870 |
+
nn.init.zeros_(p)
|
871 |
+
return module
|
replace_bg/model/image_processor.py
ADDED
@@ -0,0 +1,991 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import math
|
16 |
+
import warnings
|
17 |
+
from typing import List, Optional, Tuple, Union
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
import PIL.Image
|
21 |
+
import torch
|
22 |
+
import torch.nn.functional as F
|
23 |
+
from PIL import Image, ImageFilter, ImageOps
|
24 |
+
|
25 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
26 |
+
from diffusers.utils import CONFIG_NAME, PIL_INTERPOLATION, deprecate
|
27 |
+
# from .utils import CONFIG_NAME, PIL_INTERPOLATION, deprecate
|
28 |
+
|
29 |
+
|
30 |
+
PipelineImageInput = Union[
|
31 |
+
PIL.Image.Image,
|
32 |
+
np.ndarray,
|
33 |
+
torch.FloatTensor,
|
34 |
+
List[PIL.Image.Image],
|
35 |
+
List[np.ndarray],
|
36 |
+
List[torch.FloatTensor],
|
37 |
+
]
|
38 |
+
|
39 |
+
PipelineDepthInput = PipelineImageInput
|
40 |
+
|
41 |
+
|
42 |
+
class VaeImageProcessor(ConfigMixin):
|
43 |
+
"""
|
44 |
+
Image processor for VAE.
|
45 |
+
|
46 |
+
Args:
|
47 |
+
do_resize (`bool`, *optional*, defaults to `True`):
|
48 |
+
Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`. Can accept
|
49 |
+
`height` and `width` arguments from [`image_processor.VaeImageProcessor.preprocess`] method.
|
50 |
+
vae_scale_factor (`int`, *optional*, defaults to `8`):
|
51 |
+
VAE scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of this factor.
|
52 |
+
resample (`str`, *optional*, defaults to `lanczos`):
|
53 |
+
Resampling filter to use when resizing the image.
|
54 |
+
do_normalize (`bool`, *optional*, defaults to `True`):
|
55 |
+
Whether to normalize the image to [-1,1].
|
56 |
+
do_binarize (`bool`, *optional*, defaults to `False`):
|
57 |
+
Whether to binarize the image to 0/1.
|
58 |
+
do_convert_rgb (`bool`, *optional*, defaults to be `False`):
|
59 |
+
Whether to convert the images to RGB format.
|
60 |
+
do_convert_grayscale (`bool`, *optional*, defaults to be `False`):
|
61 |
+
Whether to convert the images to grayscale format.
|
62 |
+
"""
|
63 |
+
|
64 |
+
config_name = CONFIG_NAME
|
65 |
+
|
66 |
+
@register_to_config
|
67 |
+
def __init__(
|
68 |
+
self,
|
69 |
+
do_resize: bool = True,
|
70 |
+
vae_scale_factor: int = 8,
|
71 |
+
resample: str = "lanczos",
|
72 |
+
do_normalize: bool = True,
|
73 |
+
do_binarize: bool = False,
|
74 |
+
do_convert_rgb: bool = False,
|
75 |
+
do_convert_grayscale: bool = False,
|
76 |
+
):
|
77 |
+
super().__init__()
|
78 |
+
if do_convert_rgb and do_convert_grayscale:
|
79 |
+
raise ValueError(
|
80 |
+
"`do_convert_rgb` and `do_convert_grayscale` can not both be set to `True`,"
|
81 |
+
" if you intended to convert the image into RGB format, please set `do_convert_grayscale = False`.",
|
82 |
+
" if you intended to convert the image into grayscale format, please set `do_convert_rgb = False`",
|
83 |
+
)
|
84 |
+
self.config.do_convert_rgb = False
|
85 |
+
|
86 |
+
@staticmethod
|
87 |
+
def numpy_to_pil(images: np.ndarray) -> List[PIL.Image.Image]:
|
88 |
+
"""
|
89 |
+
Convert a numpy image or a batch of images to a PIL image.
|
90 |
+
"""
|
91 |
+
if images.ndim == 3:
|
92 |
+
images = images[None, ...]
|
93 |
+
images = (images * 255).round().astype("uint8")
|
94 |
+
if images.shape[-1] == 1:
|
95 |
+
# special case for grayscale (single channel) images
|
96 |
+
pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
|
97 |
+
else:
|
98 |
+
pil_images = [Image.fromarray(image) for image in images]
|
99 |
+
|
100 |
+
return pil_images
|
101 |
+
|
102 |
+
@staticmethod
|
103 |
+
def pil_to_numpy(images: Union[List[PIL.Image.Image], PIL.Image.Image]) -> np.ndarray:
|
104 |
+
"""
|
105 |
+
Convert a PIL image or a list of PIL images to NumPy arrays.
|
106 |
+
"""
|
107 |
+
if not isinstance(images, list):
|
108 |
+
images = [images]
|
109 |
+
images = [np.array(image).astype(np.float32) / 255.0 for image in images]
|
110 |
+
images = np.stack(images, axis=0)
|
111 |
+
|
112 |
+
return images
|
113 |
+
|
114 |
+
@staticmethod
|
115 |
+
def numpy_to_pt(images: np.ndarray) -> torch.FloatTensor:
|
116 |
+
"""
|
117 |
+
Convert a NumPy image to a PyTorch tensor.
|
118 |
+
"""
|
119 |
+
if images.ndim == 3:
|
120 |
+
images = images[..., None]
|
121 |
+
|
122 |
+
images = torch.from_numpy(images.transpose(0, 3, 1, 2))
|
123 |
+
return images
|
124 |
+
|
125 |
+
@staticmethod
|
126 |
+
def pt_to_numpy(images: torch.FloatTensor) -> np.ndarray:
|
127 |
+
"""
|
128 |
+
Convert a PyTorch tensor to a NumPy image.
|
129 |
+
"""
|
130 |
+
images = images.cpu().permute(0, 2, 3, 1).float().numpy()
|
131 |
+
return images
|
132 |
+
|
133 |
+
@staticmethod
|
134 |
+
def normalize(images: Union[np.ndarray, torch.Tensor]) -> Union[np.ndarray, torch.Tensor]:
|
135 |
+
"""
|
136 |
+
Normalize an image array to [-1,1].
|
137 |
+
"""
|
138 |
+
return 2.0 * images - 1.0
|
139 |
+
|
140 |
+
@staticmethod
|
141 |
+
def denormalize(images: Union[np.ndarray, torch.Tensor]) -> Union[np.ndarray, torch.Tensor]:
|
142 |
+
"""
|
143 |
+
Denormalize an image array to [0,1].
|
144 |
+
"""
|
145 |
+
return (images / 2 + 0.5).clamp(0, 1)
|
146 |
+
|
147 |
+
@staticmethod
|
148 |
+
def convert_to_rgb(image: PIL.Image.Image) -> PIL.Image.Image:
|
149 |
+
"""
|
150 |
+
Converts a PIL image to RGB format.
|
151 |
+
"""
|
152 |
+
image = image.convert("RGB")
|
153 |
+
|
154 |
+
return image
|
155 |
+
|
156 |
+
@staticmethod
|
157 |
+
def convert_to_grayscale(image: PIL.Image.Image) -> PIL.Image.Image:
|
158 |
+
"""
|
159 |
+
Converts a PIL image to grayscale format.
|
160 |
+
"""
|
161 |
+
image = image.convert("L")
|
162 |
+
|
163 |
+
return image
|
164 |
+
|
165 |
+
@staticmethod
|
166 |
+
def blur(image: PIL.Image.Image, blur_factor: int = 4) -> PIL.Image.Image:
|
167 |
+
"""
|
168 |
+
Applies Gaussian blur to an image.
|
169 |
+
"""
|
170 |
+
image = image.filter(ImageFilter.GaussianBlur(blur_factor))
|
171 |
+
|
172 |
+
return image
|
173 |
+
|
174 |
+
@staticmethod
|
175 |
+
def get_crop_region(mask_image: PIL.Image.Image, width: int, height: int, pad=0):
|
176 |
+
"""
|
177 |
+
Finds a rectangular region that contains all masked ares in an image, and expands region to match the aspect ratio of the original image;
|
178 |
+
for example, if user drew mask in a 128x32 region, and the dimensions for processing are 512x512, the region will be expanded to 128x128.
|
179 |
+
|
180 |
+
Args:
|
181 |
+
mask_image (PIL.Image.Image): Mask image.
|
182 |
+
width (int): Width of the image to be processed.
|
183 |
+
height (int): Height of the image to be processed.
|
184 |
+
pad (int, optional): Padding to be added to the crop region. Defaults to 0.
|
185 |
+
|
186 |
+
Returns:
|
187 |
+
tuple: (x1, y1, x2, y2) represent a rectangular region that contains all masked ares in an image and matches the original aspect ratio.
|
188 |
+
"""
|
189 |
+
|
190 |
+
mask_image = mask_image.convert("L")
|
191 |
+
mask = np.array(mask_image)
|
192 |
+
|
193 |
+
# 1. find a rectangular region that contains all masked ares in an image
|
194 |
+
h, w = mask.shape
|
195 |
+
crop_left = 0
|
196 |
+
for i in range(w):
|
197 |
+
if not (mask[:, i] == 0).all():
|
198 |
+
break
|
199 |
+
crop_left += 1
|
200 |
+
|
201 |
+
crop_right = 0
|
202 |
+
for i in reversed(range(w)):
|
203 |
+
if not (mask[:, i] == 0).all():
|
204 |
+
break
|
205 |
+
crop_right += 1
|
206 |
+
|
207 |
+
crop_top = 0
|
208 |
+
for i in range(h):
|
209 |
+
if not (mask[i] == 0).all():
|
210 |
+
break
|
211 |
+
crop_top += 1
|
212 |
+
|
213 |
+
crop_bottom = 0
|
214 |
+
for i in reversed(range(h)):
|
215 |
+
if not (mask[i] == 0).all():
|
216 |
+
break
|
217 |
+
crop_bottom += 1
|
218 |
+
|
219 |
+
# 2. add padding to the crop region
|
220 |
+
x1, y1, x2, y2 = (
|
221 |
+
int(max(crop_left - pad, 0)),
|
222 |
+
int(max(crop_top - pad, 0)),
|
223 |
+
int(min(w - crop_right + pad, w)),
|
224 |
+
int(min(h - crop_bottom + pad, h)),
|
225 |
+
)
|
226 |
+
|
227 |
+
# 3. expands crop region to match the aspect ratio of the image to be processed
|
228 |
+
ratio_crop_region = (x2 - x1) / (y2 - y1)
|
229 |
+
ratio_processing = width / height
|
230 |
+
|
231 |
+
if ratio_crop_region > ratio_processing:
|
232 |
+
desired_height = (x2 - x1) / ratio_processing
|
233 |
+
desired_height_diff = int(desired_height - (y2 - y1))
|
234 |
+
y1 -= desired_height_diff // 2
|
235 |
+
y2 += desired_height_diff - desired_height_diff // 2
|
236 |
+
if y2 >= mask_image.height:
|
237 |
+
diff = y2 - mask_image.height
|
238 |
+
y2 -= diff
|
239 |
+
y1 -= diff
|
240 |
+
if y1 < 0:
|
241 |
+
y2 -= y1
|
242 |
+
y1 -= y1
|
243 |
+
if y2 >= mask_image.height:
|
244 |
+
y2 = mask_image.height
|
245 |
+
else:
|
246 |
+
desired_width = (y2 - y1) * ratio_processing
|
247 |
+
desired_width_diff = int(desired_width - (x2 - x1))
|
248 |
+
x1 -= desired_width_diff // 2
|
249 |
+
x2 += desired_width_diff - desired_width_diff // 2
|
250 |
+
if x2 >= mask_image.width:
|
251 |
+
diff = x2 - mask_image.width
|
252 |
+
x2 -= diff
|
253 |
+
x1 -= diff
|
254 |
+
if x1 < 0:
|
255 |
+
x2 -= x1
|
256 |
+
x1 -= x1
|
257 |
+
if x2 >= mask_image.width:
|
258 |
+
x2 = mask_image.width
|
259 |
+
|
260 |
+
return x1, y1, x2, y2
|
261 |
+
|
262 |
+
def _resize_and_fill(
|
263 |
+
self,
|
264 |
+
image: PIL.Image.Image,
|
265 |
+
width: int,
|
266 |
+
height: int,
|
267 |
+
) -> PIL.Image.Image:
|
268 |
+
"""
|
269 |
+
Resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image within the dimensions, filling empty with data from image.
|
270 |
+
|
271 |
+
Args:
|
272 |
+
image: The image to resize.
|
273 |
+
width: The width to resize the image to.
|
274 |
+
height: The height to resize the image to.
|
275 |
+
"""
|
276 |
+
|
277 |
+
ratio = width / height
|
278 |
+
src_ratio = image.width / image.height
|
279 |
+
|
280 |
+
src_w = width if ratio < src_ratio else image.width * height // image.height
|
281 |
+
src_h = height if ratio >= src_ratio else image.height * width // image.width
|
282 |
+
|
283 |
+
resized = image.resize((src_w, src_h), resample=PIL_INTERPOLATION["lanczos"])
|
284 |
+
res = Image.new("RGB", (width, height))
|
285 |
+
res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2))
|
286 |
+
|
287 |
+
if ratio < src_ratio:
|
288 |
+
fill_height = height // 2 - src_h // 2
|
289 |
+
if fill_height > 0:
|
290 |
+
res.paste(resized.resize((width, fill_height), box=(0, 0, width, 0)), box=(0, 0))
|
291 |
+
res.paste(
|
292 |
+
resized.resize((width, fill_height), box=(0, resized.height, width, resized.height)),
|
293 |
+
box=(0, fill_height + src_h),
|
294 |
+
)
|
295 |
+
elif ratio > src_ratio:
|
296 |
+
fill_width = width // 2 - src_w // 2
|
297 |
+
if fill_width > 0:
|
298 |
+
res.paste(resized.resize((fill_width, height), box=(0, 0, 0, height)), box=(0, 0))
|
299 |
+
res.paste(
|
300 |
+
resized.resize((fill_width, height), box=(resized.width, 0, resized.width, height)),
|
301 |
+
box=(fill_width + src_w, 0),
|
302 |
+
)
|
303 |
+
|
304 |
+
return res
|
305 |
+
|
306 |
+
def _resize_and_crop(
|
307 |
+
self,
|
308 |
+
image: PIL.Image.Image,
|
309 |
+
width: int,
|
310 |
+
height: int,
|
311 |
+
) -> PIL.Image.Image:
|
312 |
+
"""
|
313 |
+
Resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image within the dimensions, cropping the excess.
|
314 |
+
|
315 |
+
Args:
|
316 |
+
image: The image to resize.
|
317 |
+
width: The width to resize the image to.
|
318 |
+
height: The height to resize the image to.
|
319 |
+
"""
|
320 |
+
ratio = width / height
|
321 |
+
src_ratio = image.width / image.height
|
322 |
+
|
323 |
+
src_w = width if ratio > src_ratio else image.width * height // image.height
|
324 |
+
src_h = height if ratio <= src_ratio else image.height * width // image.width
|
325 |
+
|
326 |
+
resized = image.resize((src_w, src_h), resample=PIL_INTERPOLATION["lanczos"])
|
327 |
+
res = Image.new("RGB", (width, height))
|
328 |
+
res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2))
|
329 |
+
return res
|
330 |
+
|
331 |
+
def resize(
|
332 |
+
self,
|
333 |
+
image: Union[PIL.Image.Image, np.ndarray, torch.Tensor],
|
334 |
+
height: int,
|
335 |
+
width: int,
|
336 |
+
resize_mode: str = "default", # "default", "fill", "crop"
|
337 |
+
) -> Union[PIL.Image.Image, np.ndarray, torch.Tensor]:
|
338 |
+
"""
|
339 |
+
Resize image.
|
340 |
+
|
341 |
+
Args:
|
342 |
+
image (`PIL.Image.Image`, `np.ndarray` or `torch.Tensor`):
|
343 |
+
The image input, can be a PIL image, numpy array or pytorch tensor.
|
344 |
+
height (`int`):
|
345 |
+
The height to resize to.
|
346 |
+
width (`int`):
|
347 |
+
The width to resize to.
|
348 |
+
resize_mode (`str`, *optional*, defaults to `default`):
|
349 |
+
The resize mode to use, can be one of `default` or `fill`. If `default`, will resize the image to fit
|
350 |
+
within the specified width and height, and it may not maintaining the original aspect ratio.
|
351 |
+
If `fill`, will resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image
|
352 |
+
within the dimensions, filling empty with data from image.
|
353 |
+
If `crop`, will resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image
|
354 |
+
within the dimensions, cropping the excess.
|
355 |
+
Note that resize_mode `fill` and `crop` are only supported for PIL image input.
|
356 |
+
|
357 |
+
Returns:
|
358 |
+
`PIL.Image.Image`, `np.ndarray` or `torch.Tensor`:
|
359 |
+
The resized image.
|
360 |
+
"""
|
361 |
+
if resize_mode != "default" and not isinstance(image, PIL.Image.Image):
|
362 |
+
raise ValueError(f"Only PIL image input is supported for resize_mode {resize_mode}")
|
363 |
+
if isinstance(image, PIL.Image.Image):
|
364 |
+
if resize_mode == "default":
|
365 |
+
image = image.resize((width, height), resample=PIL_INTERPOLATION[self.config.resample])
|
366 |
+
elif resize_mode == "fill":
|
367 |
+
image = self._resize_and_fill(image, width, height)
|
368 |
+
elif resize_mode == "crop":
|
369 |
+
image = self._resize_and_crop(image, width, height)
|
370 |
+
else:
|
371 |
+
raise ValueError(f"resize_mode {resize_mode} is not supported")
|
372 |
+
|
373 |
+
elif isinstance(image, torch.Tensor):
|
374 |
+
image = torch.nn.functional.interpolate(
|
375 |
+
image,
|
376 |
+
size=(height, width),
|
377 |
+
)
|
378 |
+
elif isinstance(image, np.ndarray):
|
379 |
+
image = self.numpy_to_pt(image)
|
380 |
+
image = torch.nn.functional.interpolate(
|
381 |
+
image,
|
382 |
+
size=(height, width),
|
383 |
+
)
|
384 |
+
image = self.pt_to_numpy(image)
|
385 |
+
return image
|
386 |
+
|
387 |
+
def binarize(self, image: PIL.Image.Image) -> PIL.Image.Image:
|
388 |
+
"""
|
389 |
+
Create a mask.
|
390 |
+
|
391 |
+
Args:
|
392 |
+
image (`PIL.Image.Image`):
|
393 |
+
The image input, should be a PIL image.
|
394 |
+
|
395 |
+
Returns:
|
396 |
+
`PIL.Image.Image`:
|
397 |
+
The binarized image. Values less than 0.5 are set to 0, values greater than 0.5 are set to 1.
|
398 |
+
"""
|
399 |
+
image[image < 0.5] = 0
|
400 |
+
image[image >= 0.5] = 1
|
401 |
+
|
402 |
+
return image
|
403 |
+
|
404 |
+
def get_default_height_width(
|
405 |
+
self,
|
406 |
+
image: Union[PIL.Image.Image, np.ndarray, torch.Tensor],
|
407 |
+
height: Optional[int] = None,
|
408 |
+
width: Optional[int] = None,
|
409 |
+
) -> Tuple[int, int]:
|
410 |
+
"""
|
411 |
+
This function return the height and width that are downscaled to the next integer multiple of
|
412 |
+
`vae_scale_factor`.
|
413 |
+
|
414 |
+
Args:
|
415 |
+
image(`PIL.Image.Image`, `np.ndarray` or `torch.Tensor`):
|
416 |
+
The image input, can be a PIL image, numpy array or pytorch tensor. if it is a numpy array, should have
|
417 |
+
shape `[batch, height, width]` or `[batch, height, width, channel]` if it is a pytorch tensor, should
|
418 |
+
have shape `[batch, channel, height, width]`.
|
419 |
+
height (`int`, *optional*, defaults to `None`):
|
420 |
+
The height in preprocessed image. If `None`, will use the height of `image` input.
|
421 |
+
width (`int`, *optional*`, defaults to `None`):
|
422 |
+
The width in preprocessed. If `None`, will use the width of the `image` input.
|
423 |
+
"""
|
424 |
+
|
425 |
+
if height is None:
|
426 |
+
if isinstance(image, PIL.Image.Image):
|
427 |
+
height = image.height
|
428 |
+
elif isinstance(image, torch.Tensor):
|
429 |
+
height = image.shape[2]
|
430 |
+
else:
|
431 |
+
height = image.shape[1]
|
432 |
+
|
433 |
+
if width is None:
|
434 |
+
if isinstance(image, PIL.Image.Image):
|
435 |
+
width = image.width
|
436 |
+
elif isinstance(image, torch.Tensor):
|
437 |
+
width = image.shape[3]
|
438 |
+
else:
|
439 |
+
width = image.shape[2]
|
440 |
+
|
441 |
+
width, height = (
|
442 |
+
x - x % self.config.vae_scale_factor for x in (width, height)
|
443 |
+
) # resize to integer multiple of vae_scale_factor
|
444 |
+
|
445 |
+
return height, width
|
446 |
+
|
447 |
+
def preprocess(
|
448 |
+
self,
|
449 |
+
image: PipelineImageInput,
|
450 |
+
height: Optional[int] = None,
|
451 |
+
width: Optional[int] = None,
|
452 |
+
resize_mode: str = "default", # "default", "fill", "crop"
|
453 |
+
crops_coords: Optional[Tuple[int, int, int, int]] = None,
|
454 |
+
) -> torch.Tensor:
|
455 |
+
"""
|
456 |
+
Preprocess the image input.
|
457 |
+
|
458 |
+
Args:
|
459 |
+
image (`pipeline_image_input`):
|
460 |
+
The image input, accepted formats are PIL images, NumPy arrays, PyTorch tensors; Also accept list of supported formats.
|
461 |
+
height (`int`, *optional*, defaults to `None`):
|
462 |
+
The height in preprocessed image. If `None`, will use the `get_default_height_width()` to get default height.
|
463 |
+
width (`int`, *optional*`, defaults to `None`):
|
464 |
+
The width in preprocessed. If `None`, will use get_default_height_width()` to get the default width.
|
465 |
+
resize_mode (`str`, *optional*, defaults to `default`):
|
466 |
+
The resize mode, can be one of `default` or `fill`. If `default`, will resize the image to fit
|
467 |
+
within the specified width and height, and it may not maintaining the original aspect ratio.
|
468 |
+
If `fill`, will resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image
|
469 |
+
within the dimensions, filling empty with data from image.
|
470 |
+
If `crop`, will resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image
|
471 |
+
within the dimensions, cropping the excess.
|
472 |
+
Note that resize_mode `fill` and `crop` are only supported for PIL image input.
|
473 |
+
crops_coords (`List[Tuple[int, int, int, int]]`, *optional*, defaults to `None`):
|
474 |
+
The crop coordinates for each image in the batch. If `None`, will not crop the image.
|
475 |
+
"""
|
476 |
+
supported_formats = (PIL.Image.Image, np.ndarray, torch.Tensor)
|
477 |
+
|
478 |
+
# Expand the missing dimension for 3-dimensional pytorch tensor or numpy array that represents grayscale image
|
479 |
+
if self.config.do_convert_grayscale and isinstance(image, (torch.Tensor, np.ndarray)) and image.ndim == 3:
|
480 |
+
if isinstance(image, torch.Tensor):
|
481 |
+
# if image is a pytorch tensor could have 2 possible shapes:
|
482 |
+
# 1. batch x height x width: we should insert the channel dimension at position 1
|
483 |
+
# 2. channel x height x width: we should insert batch dimension at position 0,
|
484 |
+
# however, since both channel and batch dimension has same size 1, it is same to insert at position 1
|
485 |
+
# for simplicity, we insert a dimension of size 1 at position 1 for both cases
|
486 |
+
image = image.unsqueeze(1)
|
487 |
+
else:
|
488 |
+
# if it is a numpy array, it could have 2 possible shapes:
|
489 |
+
# 1. batch x height x width: insert channel dimension on last position
|
490 |
+
# 2. height x width x channel: insert batch dimension on first position
|
491 |
+
if image.shape[-1] == 1:
|
492 |
+
image = np.expand_dims(image, axis=0)
|
493 |
+
else:
|
494 |
+
image = np.expand_dims(image, axis=-1)
|
495 |
+
|
496 |
+
if isinstance(image, supported_formats):
|
497 |
+
image = [image]
|
498 |
+
elif not (isinstance(image, list) and all(isinstance(i, supported_formats) for i in image)):
|
499 |
+
raise ValueError(
|
500 |
+
f"Input is in incorrect format: {[type(i) for i in image]}. Currently, we only support {', '.join(supported_formats)}"
|
501 |
+
)
|
502 |
+
|
503 |
+
if isinstance(image[0], PIL.Image.Image):
|
504 |
+
if crops_coords is not None:
|
505 |
+
image = [i.crop(crops_coords) for i in image]
|
506 |
+
if self.config.do_resize:
|
507 |
+
height, width = self.get_default_height_width(image[0], height, width)
|
508 |
+
image = [self.resize(i, height, width, resize_mode=resize_mode) for i in image]
|
509 |
+
if self.config.do_convert_rgb:
|
510 |
+
image = [self.convert_to_rgb(i) for i in image]
|
511 |
+
elif self.config.do_convert_grayscale:
|
512 |
+
image = [self.convert_to_grayscale(i) for i in image]
|
513 |
+
image = self.pil_to_numpy(image) # to np
|
514 |
+
image = self.numpy_to_pt(image) # to pt
|
515 |
+
|
516 |
+
elif isinstance(image[0], np.ndarray):
|
517 |
+
image = np.concatenate(image, axis=0) if image[0].ndim == 4 else np.stack(image, axis=0)
|
518 |
+
|
519 |
+
image = self.numpy_to_pt(image)
|
520 |
+
|
521 |
+
height, width = self.get_default_height_width(image, height, width)
|
522 |
+
if self.config.do_resize:
|
523 |
+
image = self.resize(image, height, width)
|
524 |
+
|
525 |
+
elif isinstance(image[0], torch.Tensor):
|
526 |
+
image = torch.cat(image, axis=0) if image[0].ndim == 4 else torch.stack(image, axis=0)
|
527 |
+
|
528 |
+
if self.config.do_convert_grayscale and image.ndim == 3:
|
529 |
+
image = image.unsqueeze(1)
|
530 |
+
|
531 |
+
channel = image.shape[1]
|
532 |
+
# don't need any preprocess if the image is latents
|
533 |
+
if channel >= 4:
|
534 |
+
return image
|
535 |
+
|
536 |
+
height, width = self.get_default_height_width(image, height, width)
|
537 |
+
if self.config.do_resize:
|
538 |
+
image = self.resize(image, height, width)
|
539 |
+
|
540 |
+
# expected range [0,1], normalize to [-1,1]
|
541 |
+
do_normalize = self.config.do_normalize
|
542 |
+
if do_normalize and image.min() < 0:
|
543 |
+
warnings.warn(
|
544 |
+
"Passing `image` as torch tensor with value range in [-1,1] is deprecated. The expected value range for image tensor is [0,1] "
|
545 |
+
f"when passing as pytorch tensor or numpy Array. You passed `image` with value range [{image.min()},{image.max()}]",
|
546 |
+
FutureWarning,
|
547 |
+
)
|
548 |
+
do_normalize = False
|
549 |
+
|
550 |
+
if do_normalize:
|
551 |
+
image = self.normalize(image)
|
552 |
+
|
553 |
+
if self.config.do_binarize:
|
554 |
+
image = self.binarize(image)
|
555 |
+
|
556 |
+
return image
|
557 |
+
|
558 |
+
def postprocess(
|
559 |
+
self,
|
560 |
+
image: torch.FloatTensor,
|
561 |
+
output_type: str = "pil",
|
562 |
+
do_denormalize: Optional[List[bool]] = None,
|
563 |
+
) -> Union[PIL.Image.Image, np.ndarray, torch.FloatTensor]:
|
564 |
+
"""
|
565 |
+
Postprocess the image output from tensor to `output_type`.
|
566 |
+
|
567 |
+
Args:
|
568 |
+
image (`torch.FloatTensor`):
|
569 |
+
The image input, should be a pytorch tensor with shape `B x C x H x W`.
|
570 |
+
output_type (`str`, *optional*, defaults to `pil`):
|
571 |
+
The output type of the image, can be one of `pil`, `np`, `pt`, `latent`.
|
572 |
+
do_denormalize (`List[bool]`, *optional*, defaults to `None`):
|
573 |
+
Whether to denormalize the image to [0,1]. If `None`, will use the value of `do_normalize` in the
|
574 |
+
`VaeImageProcessor` config.
|
575 |
+
|
576 |
+
Returns:
|
577 |
+
`PIL.Image.Image`, `np.ndarray` or `torch.FloatTensor`:
|
578 |
+
The postprocessed image.
|
579 |
+
"""
|
580 |
+
if not isinstance(image, torch.Tensor):
|
581 |
+
raise ValueError(
|
582 |
+
f"Input for postprocessing is in incorrect format: {type(image)}. We only support pytorch tensor"
|
583 |
+
)
|
584 |
+
if output_type not in ["latent", "pt", "np", "pil"]:
|
585 |
+
deprecation_message = (
|
586 |
+
f"the output_type {output_type} is outdated and has been set to `np`. Please make sure to set it to one of these instead: "
|
587 |
+
"`pil`, `np`, `pt`, `latent`"
|
588 |
+
)
|
589 |
+
deprecate("Unsupported output_type", "1.0.0", deprecation_message, standard_warn=False)
|
590 |
+
output_type = "np"
|
591 |
+
|
592 |
+
if output_type == "latent":
|
593 |
+
return image
|
594 |
+
|
595 |
+
if do_denormalize is None:
|
596 |
+
do_denormalize = [self.config.do_normalize] * image.shape[0]
|
597 |
+
|
598 |
+
image = torch.stack(
|
599 |
+
[self.denormalize(image[i]) if do_denormalize[i] else image[i] for i in range(image.shape[0])]
|
600 |
+
)
|
601 |
+
|
602 |
+
if output_type == "pt":
|
603 |
+
return image
|
604 |
+
|
605 |
+
image = self.pt_to_numpy(image)
|
606 |
+
|
607 |
+
if output_type == "np":
|
608 |
+
return image
|
609 |
+
|
610 |
+
if output_type == "pil":
|
611 |
+
return self.numpy_to_pil(image)
|
612 |
+
|
613 |
+
def apply_overlay(
|
614 |
+
self,
|
615 |
+
mask: PIL.Image.Image,
|
616 |
+
init_image: PIL.Image.Image,
|
617 |
+
image: PIL.Image.Image,
|
618 |
+
crop_coords: Optional[Tuple[int, int, int, int]] = None,
|
619 |
+
) -> PIL.Image.Image:
|
620 |
+
"""
|
621 |
+
overlay the inpaint output to the original image
|
622 |
+
"""
|
623 |
+
|
624 |
+
width, height = image.width, image.height
|
625 |
+
|
626 |
+
init_image = self.resize(init_image, width=width, height=height)
|
627 |
+
mask = self.resize(mask, width=width, height=height)
|
628 |
+
|
629 |
+
init_image_masked = PIL.Image.new("RGBa", (width, height))
|
630 |
+
init_image_masked.paste(init_image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(mask.convert("L")))
|
631 |
+
init_image_masked = init_image_masked.convert("RGBA")
|
632 |
+
|
633 |
+
if crop_coords is not None:
|
634 |
+
x, y, x2, y2 = crop_coords
|
635 |
+
w = x2 - x
|
636 |
+
h = y2 - y
|
637 |
+
base_image = PIL.Image.new("RGBA", (width, height))
|
638 |
+
image = self.resize(image, height=h, width=w, resize_mode="crop")
|
639 |
+
base_image.paste(image, (x, y))
|
640 |
+
image = base_image.convert("RGB")
|
641 |
+
|
642 |
+
image = image.convert("RGBA")
|
643 |
+
image.alpha_composite(init_image_masked)
|
644 |
+
image = image.convert("RGB")
|
645 |
+
|
646 |
+
return image
|
647 |
+
|
648 |
+
|
649 |
+
class VaeImageProcessorLDM3D(VaeImageProcessor):
|
650 |
+
"""
|
651 |
+
Image processor for VAE LDM3D.
|
652 |
+
|
653 |
+
Args:
|
654 |
+
do_resize (`bool`, *optional*, defaults to `True`):
|
655 |
+
Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`.
|
656 |
+
vae_scale_factor (`int`, *optional*, defaults to `8`):
|
657 |
+
VAE scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of this factor.
|
658 |
+
resample (`str`, *optional*, defaults to `lanczos`):
|
659 |
+
Resampling filter to use when resizing the image.
|
660 |
+
do_normalize (`bool`, *optional*, defaults to `True`):
|
661 |
+
Whether to normalize the image to [-1,1].
|
662 |
+
"""
|
663 |
+
|
664 |
+
config_name = CONFIG_NAME
|
665 |
+
|
666 |
+
@register_to_config
|
667 |
+
def __init__(
|
668 |
+
self,
|
669 |
+
do_resize: bool = True,
|
670 |
+
vae_scale_factor: int = 8,
|
671 |
+
resample: str = "lanczos",
|
672 |
+
do_normalize: bool = True,
|
673 |
+
):
|
674 |
+
super().__init__()
|
675 |
+
|
676 |
+
@staticmethod
|
677 |
+
def numpy_to_pil(images: np.ndarray) -> List[PIL.Image.Image]:
|
678 |
+
"""
|
679 |
+
Convert a NumPy image or a batch of images to a PIL image.
|
680 |
+
"""
|
681 |
+
if images.ndim == 3:
|
682 |
+
images = images[None, ...]
|
683 |
+
images = (images * 255).round().astype("uint8")
|
684 |
+
if images.shape[-1] == 1:
|
685 |
+
# special case for grayscale (single channel) images
|
686 |
+
pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
|
687 |
+
else:
|
688 |
+
pil_images = [Image.fromarray(image[:, :, :3]) for image in images]
|
689 |
+
|
690 |
+
return pil_images
|
691 |
+
|
692 |
+
@staticmethod
|
693 |
+
def depth_pil_to_numpy(images: Union[List[PIL.Image.Image], PIL.Image.Image]) -> np.ndarray:
|
694 |
+
"""
|
695 |
+
Convert a PIL image or a list of PIL images to NumPy arrays.
|
696 |
+
"""
|
697 |
+
if not isinstance(images, list):
|
698 |
+
images = [images]
|
699 |
+
|
700 |
+
images = [np.array(image).astype(np.float32) / (2**16 - 1) for image in images]
|
701 |
+
images = np.stack(images, axis=0)
|
702 |
+
return images
|
703 |
+
|
704 |
+
@staticmethod
|
705 |
+
def rgblike_to_depthmap(image: Union[np.ndarray, torch.Tensor]) -> Union[np.ndarray, torch.Tensor]:
|
706 |
+
"""
|
707 |
+
Args:
|
708 |
+
image: RGB-like depth image
|
709 |
+
|
710 |
+
Returns: depth map
|
711 |
+
|
712 |
+
"""
|
713 |
+
return image[:, :, 1] * 2**8 + image[:, :, 2]
|
714 |
+
|
715 |
+
def numpy_to_depth(self, images: np.ndarray) -> List[PIL.Image.Image]:
|
716 |
+
"""
|
717 |
+
Convert a NumPy depth image or a batch of images to a PIL image.
|
718 |
+
"""
|
719 |
+
if images.ndim == 3:
|
720 |
+
images = images[None, ...]
|
721 |
+
images_depth = images[:, :, :, 3:]
|
722 |
+
if images.shape[-1] == 6:
|
723 |
+
images_depth = (images_depth * 255).round().astype("uint8")
|
724 |
+
pil_images = [
|
725 |
+
Image.fromarray(self.rgblike_to_depthmap(image_depth), mode="I;16") for image_depth in images_depth
|
726 |
+
]
|
727 |
+
elif images.shape[-1] == 4:
|
728 |
+
images_depth = (images_depth * 65535.0).astype(np.uint16)
|
729 |
+
pil_images = [Image.fromarray(image_depth, mode="I;16") for image_depth in images_depth]
|
730 |
+
else:
|
731 |
+
raise Exception("Not supported")
|
732 |
+
|
733 |
+
return pil_images
|
734 |
+
|
735 |
+
def postprocess(
|
736 |
+
self,
|
737 |
+
image: torch.FloatTensor,
|
738 |
+
output_type: str = "pil",
|
739 |
+
do_denormalize: Optional[List[bool]] = None,
|
740 |
+
) -> Union[PIL.Image.Image, np.ndarray, torch.FloatTensor]:
|
741 |
+
"""
|
742 |
+
Postprocess the image output from tensor to `output_type`.
|
743 |
+
|
744 |
+
Args:
|
745 |
+
image (`torch.FloatTensor`):
|
746 |
+
The image input, should be a pytorch tensor with shape `B x C x H x W`.
|
747 |
+
output_type (`str`, *optional*, defaults to `pil`):
|
748 |
+
The output type of the image, can be one of `pil`, `np`, `pt`, `latent`.
|
749 |
+
do_denormalize (`List[bool]`, *optional*, defaults to `None`):
|
750 |
+
Whether to denormalize the image to [0,1]. If `None`, will use the value of `do_normalize` in the
|
751 |
+
`VaeImageProcessor` config.
|
752 |
+
|
753 |
+
Returns:
|
754 |
+
`PIL.Image.Image`, `np.ndarray` or `torch.FloatTensor`:
|
755 |
+
The postprocessed image.
|
756 |
+
"""
|
757 |
+
if not isinstance(image, torch.Tensor):
|
758 |
+
raise ValueError(
|
759 |
+
f"Input for postprocessing is in incorrect format: {type(image)}. We only support pytorch tensor"
|
760 |
+
)
|
761 |
+
if output_type not in ["latent", "pt", "np", "pil"]:
|
762 |
+
deprecation_message = (
|
763 |
+
f"the output_type {output_type} is outdated and has been set to `np`. Please make sure to set it to one of these instead: "
|
764 |
+
"`pil`, `np`, `pt`, `latent`"
|
765 |
+
)
|
766 |
+
deprecate("Unsupported output_type", "1.0.0", deprecation_message, standard_warn=False)
|
767 |
+
output_type = "np"
|
768 |
+
|
769 |
+
if do_denormalize is None:
|
770 |
+
do_denormalize = [self.config.do_normalize] * image.shape[0]
|
771 |
+
|
772 |
+
image = torch.stack(
|
773 |
+
[self.denormalize(image[i]) if do_denormalize[i] else image[i] for i in range(image.shape[0])]
|
774 |
+
)
|
775 |
+
|
776 |
+
image = self.pt_to_numpy(image)
|
777 |
+
|
778 |
+
if output_type == "np":
|
779 |
+
if image.shape[-1] == 6:
|
780 |
+
image_depth = np.stack([self.rgblike_to_depthmap(im[:, :, 3:]) for im in image], axis=0)
|
781 |
+
else:
|
782 |
+
image_depth = image[:, :, :, 3:]
|
783 |
+
return image[:, :, :, :3], image_depth
|
784 |
+
|
785 |
+
if output_type == "pil":
|
786 |
+
return self.numpy_to_pil(image), self.numpy_to_depth(image)
|
787 |
+
else:
|
788 |
+
raise Exception(f"This type {output_type} is not supported")
|
789 |
+
|
790 |
+
def preprocess(
|
791 |
+
self,
|
792 |
+
rgb: Union[torch.FloatTensor, PIL.Image.Image, np.ndarray],
|
793 |
+
depth: Union[torch.FloatTensor, PIL.Image.Image, np.ndarray],
|
794 |
+
height: Optional[int] = None,
|
795 |
+
width: Optional[int] = None,
|
796 |
+
target_res: Optional[int] = None,
|
797 |
+
) -> torch.Tensor:
|
798 |
+
"""
|
799 |
+
Preprocess the image input. Accepted formats are PIL images, NumPy arrays or PyTorch tensors.
|
800 |
+
"""
|
801 |
+
supported_formats = (PIL.Image.Image, np.ndarray, torch.Tensor)
|
802 |
+
|
803 |
+
# Expand the missing dimension for 3-dimensional pytorch tensor or numpy array that represents grayscale image
|
804 |
+
if self.config.do_convert_grayscale and isinstance(rgb, (torch.Tensor, np.ndarray)) and rgb.ndim == 3:
|
805 |
+
raise Exception("This is not yet supported")
|
806 |
+
|
807 |
+
if isinstance(rgb, supported_formats):
|
808 |
+
rgb = [rgb]
|
809 |
+
depth = [depth]
|
810 |
+
elif not (isinstance(rgb, list) and all(isinstance(i, supported_formats) for i in rgb)):
|
811 |
+
raise ValueError(
|
812 |
+
f"Input is in incorrect format: {[type(i) for i in rgb]}. Currently, we only support {', '.join(supported_formats)}"
|
813 |
+
)
|
814 |
+
|
815 |
+
if isinstance(rgb[0], PIL.Image.Image):
|
816 |
+
if self.config.do_convert_rgb:
|
817 |
+
raise Exception("This is not yet supported")
|
818 |
+
# rgb = [self.convert_to_rgb(i) for i in rgb]
|
819 |
+
# depth = [self.convert_to_depth(i) for i in depth] #TODO define convert_to_depth
|
820 |
+
if self.config.do_resize or target_res:
|
821 |
+
height, width = self.get_default_height_width(rgb[0], height, width) if not target_res else target_res
|
822 |
+
rgb = [self.resize(i, height, width) for i in rgb]
|
823 |
+
depth = [self.resize(i, height, width) for i in depth]
|
824 |
+
rgb = self.pil_to_numpy(rgb) # to np
|
825 |
+
rgb = self.numpy_to_pt(rgb) # to pt
|
826 |
+
|
827 |
+
depth = self.depth_pil_to_numpy(depth) # to np
|
828 |
+
depth = self.numpy_to_pt(depth) # to pt
|
829 |
+
|
830 |
+
elif isinstance(rgb[0], np.ndarray):
|
831 |
+
rgb = np.concatenate(rgb, axis=0) if rgb[0].ndim == 4 else np.stack(rgb, axis=0)
|
832 |
+
rgb = self.numpy_to_pt(rgb)
|
833 |
+
height, width = self.get_default_height_width(rgb, height, width)
|
834 |
+
if self.config.do_resize:
|
835 |
+
rgb = self.resize(rgb, height, width)
|
836 |
+
|
837 |
+
depth = np.concatenate(depth, axis=0) if rgb[0].ndim == 4 else np.stack(depth, axis=0)
|
838 |
+
depth = self.numpy_to_pt(depth)
|
839 |
+
height, width = self.get_default_height_width(depth, height, width)
|
840 |
+
if self.config.do_resize:
|
841 |
+
depth = self.resize(depth, height, width)
|
842 |
+
|
843 |
+
elif isinstance(rgb[0], torch.Tensor):
|
844 |
+
raise Exception("This is not yet supported")
|
845 |
+
# rgb = torch.cat(rgb, axis=0) if rgb[0].ndim == 4 else torch.stack(rgb, axis=0)
|
846 |
+
|
847 |
+
# if self.config.do_convert_grayscale and rgb.ndim == 3:
|
848 |
+
# rgb = rgb.unsqueeze(1)
|
849 |
+
|
850 |
+
# channel = rgb.shape[1]
|
851 |
+
|
852 |
+
# height, width = self.get_default_height_width(rgb, height, width)
|
853 |
+
# if self.config.do_resize:
|
854 |
+
# rgb = self.resize(rgb, height, width)
|
855 |
+
|
856 |
+
# depth = torch.cat(depth, axis=0) if depth[0].ndim == 4 else torch.stack(depth, axis=0)
|
857 |
+
|
858 |
+
# if self.config.do_convert_grayscale and depth.ndim == 3:
|
859 |
+
# depth = depth.unsqueeze(1)
|
860 |
+
|
861 |
+
# channel = depth.shape[1]
|
862 |
+
# # don't need any preprocess if the image is latents
|
863 |
+
# if depth == 4:
|
864 |
+
# return rgb, depth
|
865 |
+
|
866 |
+
# height, width = self.get_default_height_width(depth, height, width)
|
867 |
+
# if self.config.do_resize:
|
868 |
+
# depth = self.resize(depth, height, width)
|
869 |
+
# expected range [0,1], normalize to [-1,1]
|
870 |
+
do_normalize = self.config.do_normalize
|
871 |
+
if rgb.min() < 0 and do_normalize:
|
872 |
+
warnings.warn(
|
873 |
+
"Passing `image` as torch tensor with value range in [-1,1] is deprecated. The expected value range for image tensor is [0,1] "
|
874 |
+
f"when passing as pytorch tensor or numpy Array. You passed `image` with value range [{rgb.min()},{rgb.max()}]",
|
875 |
+
FutureWarning,
|
876 |
+
)
|
877 |
+
do_normalize = False
|
878 |
+
|
879 |
+
if do_normalize:
|
880 |
+
rgb = self.normalize(rgb)
|
881 |
+
depth = self.normalize(depth)
|
882 |
+
|
883 |
+
if self.config.do_binarize:
|
884 |
+
rgb = self.binarize(rgb)
|
885 |
+
depth = self.binarize(depth)
|
886 |
+
|
887 |
+
return rgb, depth
|
888 |
+
|
889 |
+
|
890 |
+
class IPAdapterMaskProcessor(VaeImageProcessor):
|
891 |
+
"""
|
892 |
+
Image processor for IP Adapter image masks.
|
893 |
+
|
894 |
+
Args:
|
895 |
+
do_resize (`bool`, *optional*, defaults to `True`):
|
896 |
+
Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`.
|
897 |
+
vae_scale_factor (`int`, *optional*, defaults to `8`):
|
898 |
+
VAE scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of this factor.
|
899 |
+
resample (`str`, *optional*, defaults to `lanczos`):
|
900 |
+
Resampling filter to use when resizing the image.
|
901 |
+
do_normalize (`bool`, *optional*, defaults to `False`):
|
902 |
+
Whether to normalize the image to [-1,1].
|
903 |
+
do_binarize (`bool`, *optional*, defaults to `True`):
|
904 |
+
Whether to binarize the image to 0/1.
|
905 |
+
do_convert_grayscale (`bool`, *optional*, defaults to be `True`):
|
906 |
+
Whether to convert the images to grayscale format.
|
907 |
+
|
908 |
+
"""
|
909 |
+
|
910 |
+
config_name = CONFIG_NAME
|
911 |
+
|
912 |
+
@register_to_config
|
913 |
+
def __init__(
|
914 |
+
self,
|
915 |
+
do_resize: bool = True,
|
916 |
+
vae_scale_factor: int = 8,
|
917 |
+
resample: str = "lanczos",
|
918 |
+
do_normalize: bool = False,
|
919 |
+
do_binarize: bool = True,
|
920 |
+
do_convert_grayscale: bool = True,
|
921 |
+
):
|
922 |
+
super().__init__(
|
923 |
+
do_resize=do_resize,
|
924 |
+
vae_scale_factor=vae_scale_factor,
|
925 |
+
resample=resample,
|
926 |
+
do_normalize=do_normalize,
|
927 |
+
do_binarize=do_binarize,
|
928 |
+
do_convert_grayscale=do_convert_grayscale,
|
929 |
+
)
|
930 |
+
|
931 |
+
@staticmethod
|
932 |
+
def downsample(mask: torch.FloatTensor, batch_size: int, num_queries: int, value_embed_dim: int):
|
933 |
+
"""
|
934 |
+
Downsamples the provided mask tensor to match the expected dimensions for scaled dot-product attention.
|
935 |
+
If the aspect ratio of the mask does not match the aspect ratio of the output image, a warning is issued.
|
936 |
+
|
937 |
+
Args:
|
938 |
+
mask (`torch.FloatTensor`):
|
939 |
+
The input mask tensor generated with `IPAdapterMaskProcessor.preprocess()`.
|
940 |
+
batch_size (`int`):
|
941 |
+
The batch size.
|
942 |
+
num_queries (`int`):
|
943 |
+
The number of queries.
|
944 |
+
value_embed_dim (`int`):
|
945 |
+
The dimensionality of the value embeddings.
|
946 |
+
|
947 |
+
Returns:
|
948 |
+
`torch.FloatTensor`:
|
949 |
+
The downsampled mask tensor.
|
950 |
+
|
951 |
+
"""
|
952 |
+
o_h = mask.shape[1]
|
953 |
+
o_w = mask.shape[2]
|
954 |
+
ratio = o_w / o_h
|
955 |
+
mask_h = int(math.sqrt(num_queries / ratio))
|
956 |
+
mask_h = int(mask_h) + int((num_queries % int(mask_h)) != 0)
|
957 |
+
mask_w = num_queries // mask_h
|
958 |
+
|
959 |
+
mask_downsample = F.interpolate(mask.unsqueeze(0), size=(mask_h, mask_w), mode="bicubic").squeeze(0)
|
960 |
+
|
961 |
+
# Repeat batch_size times
|
962 |
+
if mask_downsample.shape[0] < batch_size:
|
963 |
+
mask_downsample = mask_downsample.repeat(batch_size, 1, 1)
|
964 |
+
|
965 |
+
mask_downsample = mask_downsample.view(mask_downsample.shape[0], -1)
|
966 |
+
|
967 |
+
downsampled_area = mask_h * mask_w
|
968 |
+
# If the output image and the mask do not have the same aspect ratio, tensor shapes will not match
|
969 |
+
# Pad tensor if downsampled_mask.shape[1] is smaller than num_queries
|
970 |
+
if downsampled_area < num_queries:
|
971 |
+
warnings.warn(
|
972 |
+
"The aspect ratio of the mask does not match the aspect ratio of the output image. "
|
973 |
+
"Please update your masks or adjust the output size for optimal performance.",
|
974 |
+
UserWarning,
|
975 |
+
)
|
976 |
+
mask_downsample = F.pad(mask_downsample, (0, num_queries - mask_downsample.shape[1]), value=0.0)
|
977 |
+
# Discard last embeddings if downsampled_mask.shape[1] is bigger than num_queries
|
978 |
+
if downsampled_area > num_queries:
|
979 |
+
warnings.warn(
|
980 |
+
"The aspect ratio of the mask does not match the aspect ratio of the output image. "
|
981 |
+
"Please update your masks or adjust the output size for optimal performance.",
|
982 |
+
UserWarning,
|
983 |
+
)
|
984 |
+
mask_downsample = mask_downsample[:, :num_queries]
|
985 |
+
|
986 |
+
# Repeat last dimension to match SDPA output shape
|
987 |
+
mask_downsample = mask_downsample.view(mask_downsample.shape[0], mask_downsample.shape[1], 1).repeat(
|
988 |
+
1, 1, value_embed_dim
|
989 |
+
)
|
990 |
+
|
991 |
+
return mask_downsample
|
replace_bg/model/pipeline_controlnet_sd_xl.py
ADDED
@@ -0,0 +1,1465 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
|
16 |
+
import inspect
|
17 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
import PIL.Image
|
21 |
+
import torch
|
22 |
+
import torch.nn.functional as F
|
23 |
+
from transformers import (
|
24 |
+
CLIPImageProcessor,
|
25 |
+
CLIPTextModel,
|
26 |
+
CLIPTextModelWithProjection,
|
27 |
+
CLIPTokenizer,
|
28 |
+
CLIPVisionModelWithProjection,
|
29 |
+
)
|
30 |
+
|
31 |
+
from diffusers.utils.import_utils import is_invisible_watermark_available
|
32 |
+
|
33 |
+
from .image_processor import PipelineImageInput, VaeImageProcessor
|
34 |
+
from diffusers.loaders import (
|
35 |
+
FromSingleFileMixin,
|
36 |
+
IPAdapterMixin,
|
37 |
+
StableDiffusionXLLoraLoaderMixin,
|
38 |
+
TextualInversionLoaderMixin,
|
39 |
+
)
|
40 |
+
|
41 |
+
from .controlnet import ControlNetModel
|
42 |
+
from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
|
43 |
+
from diffusers.models.attention_processor import (
|
44 |
+
AttnProcessor2_0,
|
45 |
+
LoRAAttnProcessor2_0,
|
46 |
+
LoRAXFormersAttnProcessor,
|
47 |
+
XFormersAttnProcessor,
|
48 |
+
)
|
49 |
+
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
50 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
51 |
+
from diffusers.utils import (
|
52 |
+
USE_PEFT_BACKEND,
|
53 |
+
deprecate,
|
54 |
+
logging,
|
55 |
+
replace_example_docstring,
|
56 |
+
scale_lora_layers,
|
57 |
+
unscale_lora_layers,
|
58 |
+
)
|
59 |
+
from diffusers.utils.torch_utils import is_compiled_module, is_torch_version, randn_tensor
|
60 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
61 |
+
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
|
62 |
+
|
63 |
+
|
64 |
+
if is_invisible_watermark_available():
|
65 |
+
from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker
|
66 |
+
|
67 |
+
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
|
68 |
+
|
69 |
+
|
70 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
71 |
+
|
72 |
+
|
73 |
+
EXAMPLE_DOC_STRING = """
|
74 |
+
Examples:
|
75 |
+
```py
|
76 |
+
>>> # !pip install opencv-python transformers accelerate
|
77 |
+
>>> from diffusers import StableDiffusionXLControlNetPipeline, ControlNetModel, AutoencoderKL
|
78 |
+
>>> from diffusers.utils import load_image
|
79 |
+
>>> import numpy as np
|
80 |
+
>>> import torch
|
81 |
+
|
82 |
+
>>> import cv2
|
83 |
+
>>> from PIL import Image
|
84 |
+
|
85 |
+
>>> prompt = "aerial view, a futuristic research complex in a bright foggy jungle, hard lighting"
|
86 |
+
>>> negative_prompt = "low quality, bad quality, sketches"
|
87 |
+
|
88 |
+
>>> # download an image
|
89 |
+
>>> image = load_image(
|
90 |
+
... "https://hf.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png"
|
91 |
+
... )
|
92 |
+
|
93 |
+
>>> # initialize the models and pipeline
|
94 |
+
>>> controlnet_conditioning_scale = 0.5 # recommended for good generalization
|
95 |
+
>>> controlnet = ControlNetModel.from_pretrained(
|
96 |
+
... "diffusers/controlnet-canny-sdxl-1.0", torch_dtype=torch.float16
|
97 |
+
... )
|
98 |
+
>>> vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
99 |
+
>>> pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
100 |
+
... "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, vae=vae, torch_dtype=torch.float16
|
101 |
+
... )
|
102 |
+
>>> pipe.enable_model_cpu_offload()
|
103 |
+
|
104 |
+
>>> # get canny image
|
105 |
+
>>> image = np.array(image)
|
106 |
+
>>> image = cv2.Canny(image, 100, 200)
|
107 |
+
>>> image = image[:, :, None]
|
108 |
+
>>> image = np.concatenate([image, image, image], axis=2)
|
109 |
+
>>> canny_image = Image.fromarray(image)
|
110 |
+
|
111 |
+
>>> # generate image
|
112 |
+
>>> image = pipe(
|
113 |
+
... prompt, controlnet_conditioning_scale=controlnet_conditioning_scale, image=canny_image
|
114 |
+
... ).images[0]
|
115 |
+
```
|
116 |
+
"""
|
117 |
+
|
118 |
+
|
119 |
+
class StableDiffusionXLControlNetPipeline(
|
120 |
+
DiffusionPipeline,
|
121 |
+
TextualInversionLoaderMixin,
|
122 |
+
StableDiffusionXLLoraLoaderMixin,
|
123 |
+
IPAdapterMixin,
|
124 |
+
FromSingleFileMixin,
|
125 |
+
):
|
126 |
+
r"""
|
127 |
+
Pipeline for text-to-image generation using Stable Diffusion XL with ControlNet guidance.
|
128 |
+
|
129 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
|
130 |
+
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
131 |
+
|
132 |
+
The pipeline also inherits the following loading methods:
|
133 |
+
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
134 |
+
- [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
135 |
+
- [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
136 |
+
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
137 |
+
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
138 |
+
|
139 |
+
Args:
|
140 |
+
vae ([`AutoencoderKL`]):
|
141 |
+
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
|
142 |
+
text_encoder ([`~transformers.CLIPTextModel`]):
|
143 |
+
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
|
144 |
+
text_encoder_2 ([`~transformers.CLIPTextModelWithProjection`]):
|
145 |
+
Second frozen text-encoder
|
146 |
+
([laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)).
|
147 |
+
tokenizer ([`~transformers.CLIPTokenizer`]):
|
148 |
+
A `CLIPTokenizer` to tokenize text.
|
149 |
+
tokenizer_2 ([`~transformers.CLIPTokenizer`]):
|
150 |
+
A `CLIPTokenizer` to tokenize text.
|
151 |
+
unet ([`UNet2DConditionModel`]):
|
152 |
+
A `UNet2DConditionModel` to denoise the encoded image latents.
|
153 |
+
controlnet ([`ControlNetModel`] or `List[ControlNetModel]`):
|
154 |
+
Provides additional conditioning to the `unet` during the denoising process. If you set multiple
|
155 |
+
ControlNets as a list, the outputs from each ControlNet are added together to create one combined
|
156 |
+
additional conditioning.
|
157 |
+
scheduler ([`SchedulerMixin`]):
|
158 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
159 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
160 |
+
force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`):
|
161 |
+
Whether the negative prompt embeddings should always be set to 0. Also see the config of
|
162 |
+
`stabilityai/stable-diffusion-xl-base-1-0`.
|
163 |
+
add_watermarker (`bool`, *optional*):
|
164 |
+
Whether to use the [invisible_watermark](https://github.com/ShieldMnt/invisible-watermark/) library to
|
165 |
+
watermark output images. If not defined, it defaults to `True` if the package is installed; otherwise no
|
166 |
+
watermarker is used.
|
167 |
+
"""
|
168 |
+
|
169 |
+
# leave controlnet out on purpose because it iterates with unet
|
170 |
+
model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->unet->vae"
|
171 |
+
_optional_components = [
|
172 |
+
"tokenizer",
|
173 |
+
"tokenizer_2",
|
174 |
+
"text_encoder",
|
175 |
+
"text_encoder_2",
|
176 |
+
"feature_extractor",
|
177 |
+
"image_encoder",
|
178 |
+
]
|
179 |
+
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
|
180 |
+
|
181 |
+
def __init__(
|
182 |
+
self,
|
183 |
+
vae: AutoencoderKL,
|
184 |
+
text_encoder: CLIPTextModel,
|
185 |
+
text_encoder_2: CLIPTextModelWithProjection,
|
186 |
+
tokenizer: CLIPTokenizer,
|
187 |
+
tokenizer_2: CLIPTokenizer,
|
188 |
+
unet: UNet2DConditionModel,
|
189 |
+
controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel],
|
190 |
+
scheduler: KarrasDiffusionSchedulers,
|
191 |
+
force_zeros_for_empty_prompt: bool = True,
|
192 |
+
add_watermarker: Optional[bool] = None,
|
193 |
+
feature_extractor: CLIPImageProcessor = None,
|
194 |
+
image_encoder: CLIPVisionModelWithProjection = None,
|
195 |
+
):
|
196 |
+
super().__init__()
|
197 |
+
|
198 |
+
if isinstance(controlnet, (list, tuple)):
|
199 |
+
controlnet = MultiControlNetModel(controlnet)
|
200 |
+
|
201 |
+
self.register_modules(
|
202 |
+
vae=vae,
|
203 |
+
text_encoder=text_encoder,
|
204 |
+
text_encoder_2=text_encoder_2,
|
205 |
+
tokenizer=tokenizer,
|
206 |
+
tokenizer_2=tokenizer_2,
|
207 |
+
unet=unet,
|
208 |
+
controlnet=controlnet,
|
209 |
+
scheduler=scheduler,
|
210 |
+
feature_extractor=feature_extractor,
|
211 |
+
image_encoder=image_encoder,
|
212 |
+
)
|
213 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
214 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True)
|
215 |
+
self.control_image_processor = VaeImageProcessor(
|
216 |
+
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
|
217 |
+
)
|
218 |
+
add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available()
|
219 |
+
|
220 |
+
if add_watermarker:
|
221 |
+
self.watermark = StableDiffusionXLWatermarker()
|
222 |
+
else:
|
223 |
+
self.watermark = None
|
224 |
+
|
225 |
+
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
|
226 |
+
|
227 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
|
228 |
+
def enable_vae_slicing(self):
|
229 |
+
r"""
|
230 |
+
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
231 |
+
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
232 |
+
"""
|
233 |
+
self.vae.enable_slicing()
|
234 |
+
|
235 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
|
236 |
+
def disable_vae_slicing(self):
|
237 |
+
r"""
|
238 |
+
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
|
239 |
+
computing decoding in one step.
|
240 |
+
"""
|
241 |
+
self.vae.disable_slicing()
|
242 |
+
|
243 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling
|
244 |
+
def enable_vae_tiling(self):
|
245 |
+
r"""
|
246 |
+
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
247 |
+
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
248 |
+
processing larger images.
|
249 |
+
"""
|
250 |
+
self.vae.enable_tiling()
|
251 |
+
|
252 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
|
253 |
+
def disable_vae_tiling(self):
|
254 |
+
r"""
|
255 |
+
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
|
256 |
+
computing decoding in one step.
|
257 |
+
"""
|
258 |
+
self.vae.disable_tiling()
|
259 |
+
|
260 |
+
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt
|
261 |
+
def encode_prompt(
|
262 |
+
self,
|
263 |
+
prompt: str,
|
264 |
+
prompt_2: Optional[str] = None,
|
265 |
+
device: Optional[torch.device] = None,
|
266 |
+
num_images_per_prompt: int = 1,
|
267 |
+
do_classifier_free_guidance: bool = True,
|
268 |
+
negative_prompt: Optional[str] = None,
|
269 |
+
negative_prompt_2: Optional[str] = None,
|
270 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
271 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
272 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
273 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
274 |
+
lora_scale: Optional[float] = None,
|
275 |
+
clip_skip: Optional[int] = None,
|
276 |
+
):
|
277 |
+
r"""
|
278 |
+
Encodes the prompt into text encoder hidden states.
|
279 |
+
|
280 |
+
Args:
|
281 |
+
prompt (`str` or `List[str]`, *optional*):
|
282 |
+
prompt to be encoded
|
283 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
284 |
+
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
285 |
+
used in both text-encoders
|
286 |
+
device: (`torch.device`):
|
287 |
+
torch device
|
288 |
+
num_images_per_prompt (`int`):
|
289 |
+
number of images that should be generated per prompt
|
290 |
+
do_classifier_free_guidance (`bool`):
|
291 |
+
whether to use classifier free guidance or not
|
292 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
293 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
294 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
295 |
+
less than `1`).
|
296 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
297 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
298 |
+
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
299 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
300 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
301 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
302 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
303 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
304 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
305 |
+
argument.
|
306 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
307 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
308 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
309 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
310 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
311 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
312 |
+
input argument.
|
313 |
+
lora_scale (`float`, *optional*):
|
314 |
+
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
315 |
+
clip_skip (`int`, *optional*):
|
316 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
317 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
318 |
+
"""
|
319 |
+
device = device or self._execution_device
|
320 |
+
|
321 |
+
# set lora scale so that monkey patched LoRA
|
322 |
+
# function of text encoder can correctly access it
|
323 |
+
if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin):
|
324 |
+
self._lora_scale = lora_scale
|
325 |
+
|
326 |
+
# dynamically adjust the LoRA scale
|
327 |
+
if self.text_encoder is not None:
|
328 |
+
if not USE_PEFT_BACKEND:
|
329 |
+
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
|
330 |
+
else:
|
331 |
+
scale_lora_layers(self.text_encoder, lora_scale)
|
332 |
+
|
333 |
+
if self.text_encoder_2 is not None:
|
334 |
+
if not USE_PEFT_BACKEND:
|
335 |
+
adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale)
|
336 |
+
else:
|
337 |
+
scale_lora_layers(self.text_encoder_2, lora_scale)
|
338 |
+
|
339 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
340 |
+
|
341 |
+
if prompt is not None:
|
342 |
+
batch_size = len(prompt)
|
343 |
+
else:
|
344 |
+
batch_size = prompt_embeds.shape[0]
|
345 |
+
|
346 |
+
# Define tokenizers and text encoders
|
347 |
+
tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
|
348 |
+
text_encoders = (
|
349 |
+
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
|
350 |
+
)
|
351 |
+
|
352 |
+
if prompt_embeds is None:
|
353 |
+
prompt_2 = prompt_2 or prompt
|
354 |
+
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
355 |
+
|
356 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
357 |
+
prompt_embeds_list = []
|
358 |
+
prompts = [prompt, prompt_2]
|
359 |
+
for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
|
360 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
361 |
+
prompt = self.maybe_convert_prompt(prompt, tokenizer)
|
362 |
+
|
363 |
+
text_inputs = tokenizer(
|
364 |
+
prompt,
|
365 |
+
padding="max_length",
|
366 |
+
max_length=tokenizer.model_max_length,
|
367 |
+
truncation=True,
|
368 |
+
return_tensors="pt",
|
369 |
+
)
|
370 |
+
|
371 |
+
text_input_ids = text_inputs.input_ids
|
372 |
+
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
373 |
+
|
374 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
375 |
+
text_input_ids, untruncated_ids
|
376 |
+
):
|
377 |
+
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
|
378 |
+
logger.warning(
|
379 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
380 |
+
f" {tokenizer.model_max_length} tokens: {removed_text}"
|
381 |
+
)
|
382 |
+
|
383 |
+
prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
|
384 |
+
|
385 |
+
# We are only ALWAYS interested in the pooled output of the final text encoder
|
386 |
+
pooled_prompt_embeds = prompt_embeds[0]
|
387 |
+
if clip_skip is None:
|
388 |
+
prompt_embeds = prompt_embeds.hidden_states[-2]
|
389 |
+
else:
|
390 |
+
# "2" because SDXL always indexes from the penultimate layer.
|
391 |
+
prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)]
|
392 |
+
|
393 |
+
prompt_embeds_list.append(prompt_embeds)
|
394 |
+
|
395 |
+
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
|
396 |
+
|
397 |
+
# get unconditional embeddings for classifier free guidance
|
398 |
+
zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
|
399 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
|
400 |
+
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
|
401 |
+
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
|
402 |
+
elif do_classifier_free_guidance and negative_prompt_embeds is None:
|
403 |
+
negative_prompt = negative_prompt or ""
|
404 |
+
negative_prompt_2 = negative_prompt_2 or negative_prompt
|
405 |
+
|
406 |
+
# normalize str to list
|
407 |
+
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
|
408 |
+
negative_prompt_2 = (
|
409 |
+
batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
|
410 |
+
)
|
411 |
+
|
412 |
+
uncond_tokens: List[str]
|
413 |
+
if prompt is not None and type(prompt) is not type(negative_prompt):
|
414 |
+
raise TypeError(
|
415 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
416 |
+
f" {type(prompt)}."
|
417 |
+
)
|
418 |
+
elif batch_size != len(negative_prompt):
|
419 |
+
raise ValueError(
|
420 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
421 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
422 |
+
" the batch size of `prompt`."
|
423 |
+
)
|
424 |
+
else:
|
425 |
+
uncond_tokens = [negative_prompt, negative_prompt_2]
|
426 |
+
|
427 |
+
negative_prompt_embeds_list = []
|
428 |
+
for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
|
429 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
430 |
+
negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer)
|
431 |
+
|
432 |
+
max_length = prompt_embeds.shape[1]
|
433 |
+
uncond_input = tokenizer(
|
434 |
+
negative_prompt,
|
435 |
+
padding="max_length",
|
436 |
+
max_length=max_length,
|
437 |
+
truncation=True,
|
438 |
+
return_tensors="pt",
|
439 |
+
)
|
440 |
+
|
441 |
+
negative_prompt_embeds = text_encoder(
|
442 |
+
uncond_input.input_ids.to(device),
|
443 |
+
output_hidden_states=True,
|
444 |
+
)
|
445 |
+
# We are only ALWAYS interested in the pooled output of the final text encoder
|
446 |
+
negative_pooled_prompt_embeds = negative_prompt_embeds[0]
|
447 |
+
negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
|
448 |
+
|
449 |
+
negative_prompt_embeds_list.append(negative_prompt_embeds)
|
450 |
+
|
451 |
+
negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
|
452 |
+
|
453 |
+
if self.text_encoder_2 is not None:
|
454 |
+
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
455 |
+
else:
|
456 |
+
prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device)
|
457 |
+
|
458 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
459 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
460 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
461 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
462 |
+
|
463 |
+
if do_classifier_free_guidance:
|
464 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
465 |
+
seq_len = negative_prompt_embeds.shape[1]
|
466 |
+
|
467 |
+
if self.text_encoder_2 is not None:
|
468 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
469 |
+
else:
|
470 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device)
|
471 |
+
|
472 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
473 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
474 |
+
|
475 |
+
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
476 |
+
bs_embed * num_images_per_prompt, -1
|
477 |
+
)
|
478 |
+
if do_classifier_free_guidance:
|
479 |
+
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
480 |
+
bs_embed * num_images_per_prompt, -1
|
481 |
+
)
|
482 |
+
|
483 |
+
if self.text_encoder is not None:
|
484 |
+
if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
|
485 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
486 |
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
487 |
+
|
488 |
+
if self.text_encoder_2 is not None:
|
489 |
+
if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
|
490 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
491 |
+
unscale_lora_layers(self.text_encoder_2, lora_scale)
|
492 |
+
|
493 |
+
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
|
494 |
+
|
495 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
|
496 |
+
def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
|
497 |
+
dtype = next(self.image_encoder.parameters()).dtype
|
498 |
+
|
499 |
+
if not isinstance(image, torch.Tensor):
|
500 |
+
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
501 |
+
|
502 |
+
image = image.to(device=device, dtype=dtype)
|
503 |
+
if output_hidden_states:
|
504 |
+
image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
|
505 |
+
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
|
506 |
+
uncond_image_enc_hidden_states = self.image_encoder(
|
507 |
+
torch.zeros_like(image), output_hidden_states=True
|
508 |
+
).hidden_states[-2]
|
509 |
+
uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
|
510 |
+
num_images_per_prompt, dim=0
|
511 |
+
)
|
512 |
+
return image_enc_hidden_states, uncond_image_enc_hidden_states
|
513 |
+
else:
|
514 |
+
image_embeds = self.image_encoder(image).image_embeds
|
515 |
+
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
516 |
+
uncond_image_embeds = torch.zeros_like(image_embeds)
|
517 |
+
|
518 |
+
return image_embeds, uncond_image_embeds
|
519 |
+
|
520 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
|
521 |
+
def prepare_ip_adapter_image_embeds(self, ip_adapter_image, device, num_images_per_prompt):
|
522 |
+
if not isinstance(ip_adapter_image, list):
|
523 |
+
ip_adapter_image = [ip_adapter_image]
|
524 |
+
|
525 |
+
if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
|
526 |
+
raise ValueError(
|
527 |
+
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
|
528 |
+
)
|
529 |
+
|
530 |
+
image_embeds = []
|
531 |
+
for single_ip_adapter_image, image_proj_layer in zip(
|
532 |
+
ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
|
533 |
+
):
|
534 |
+
output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
|
535 |
+
single_image_embeds, single_negative_image_embeds = self.encode_image(
|
536 |
+
single_ip_adapter_image, device, 1, output_hidden_state
|
537 |
+
)
|
538 |
+
single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
|
539 |
+
single_negative_image_embeds = torch.stack([single_negative_image_embeds] * num_images_per_prompt, dim=0)
|
540 |
+
|
541 |
+
if self.do_classifier_free_guidance:
|
542 |
+
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
|
543 |
+
single_image_embeds = single_image_embeds.to(device)
|
544 |
+
|
545 |
+
image_embeds.append(single_image_embeds)
|
546 |
+
|
547 |
+
return image_embeds
|
548 |
+
|
549 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
550 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
551 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
552 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
553 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
554 |
+
# and should be between [0, 1]
|
555 |
+
|
556 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
557 |
+
extra_step_kwargs = {}
|
558 |
+
if accepts_eta:
|
559 |
+
extra_step_kwargs["eta"] = eta
|
560 |
+
|
561 |
+
# check if the scheduler accepts generator
|
562 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
563 |
+
if accepts_generator:
|
564 |
+
extra_step_kwargs["generator"] = generator
|
565 |
+
return extra_step_kwargs
|
566 |
+
|
567 |
+
def check_inputs(
|
568 |
+
self,
|
569 |
+
prompt,
|
570 |
+
prompt_2,
|
571 |
+
image,
|
572 |
+
callback_steps,
|
573 |
+
negative_prompt=None,
|
574 |
+
negative_prompt_2=None,
|
575 |
+
prompt_embeds=None,
|
576 |
+
negative_prompt_embeds=None,
|
577 |
+
pooled_prompt_embeds=None,
|
578 |
+
negative_pooled_prompt_embeds=None,
|
579 |
+
controlnet_conditioning_scale=1.0,
|
580 |
+
control_guidance_start=0.0,
|
581 |
+
control_guidance_end=1.0,
|
582 |
+
callback_on_step_end_tensor_inputs=None,
|
583 |
+
):
|
584 |
+
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
|
585 |
+
raise ValueError(
|
586 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
587 |
+
f" {type(callback_steps)}."
|
588 |
+
)
|
589 |
+
|
590 |
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
591 |
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
592 |
+
):
|
593 |
+
raise ValueError(
|
594 |
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
595 |
+
)
|
596 |
+
|
597 |
+
if prompt is not None and prompt_embeds is not None:
|
598 |
+
raise ValueError(
|
599 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
600 |
+
" only forward one of the two."
|
601 |
+
)
|
602 |
+
elif prompt_2 is not None and prompt_embeds is not None:
|
603 |
+
raise ValueError(
|
604 |
+
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
605 |
+
" only forward one of the two."
|
606 |
+
)
|
607 |
+
elif prompt is None and prompt_embeds is None:
|
608 |
+
raise ValueError(
|
609 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
610 |
+
)
|
611 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
612 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
613 |
+
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
|
614 |
+
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
|
615 |
+
|
616 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
617 |
+
raise ValueError(
|
618 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
619 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
620 |
+
)
|
621 |
+
elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
|
622 |
+
raise ValueError(
|
623 |
+
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
|
624 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
625 |
+
)
|
626 |
+
|
627 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
628 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
629 |
+
raise ValueError(
|
630 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
631 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
632 |
+
f" {negative_prompt_embeds.shape}."
|
633 |
+
)
|
634 |
+
|
635 |
+
if prompt_embeds is not None and pooled_prompt_embeds is None:
|
636 |
+
raise ValueError(
|
637 |
+
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
|
638 |
+
)
|
639 |
+
|
640 |
+
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
|
641 |
+
raise ValueError(
|
642 |
+
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
|
643 |
+
)
|
644 |
+
|
645 |
+
# `prompt` needs more sophisticated handling when there are multiple
|
646 |
+
# conditionings.
|
647 |
+
if isinstance(self.controlnet, MultiControlNetModel):
|
648 |
+
if isinstance(prompt, list):
|
649 |
+
logger.warning(
|
650 |
+
f"You have {len(self.controlnet.nets)} ControlNets and you have passed {len(prompt)}"
|
651 |
+
" prompts. The conditionings will be fixed across the prompts."
|
652 |
+
)
|
653 |
+
|
654 |
+
# Check `image`
|
655 |
+
is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
|
656 |
+
self.controlnet, torch._dynamo.eval_frame.OptimizedModule
|
657 |
+
)
|
658 |
+
if (
|
659 |
+
isinstance(self.controlnet, ControlNetModel)
|
660 |
+
or is_compiled
|
661 |
+
and isinstance(self.controlnet._orig_mod, ControlNetModel)
|
662 |
+
):
|
663 |
+
self.check_image(image, prompt, prompt_embeds)
|
664 |
+
elif (
|
665 |
+
isinstance(self.controlnet, MultiControlNetModel)
|
666 |
+
or is_compiled
|
667 |
+
and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
|
668 |
+
):
|
669 |
+
if not isinstance(image, list):
|
670 |
+
raise TypeError("For multiple controlnets: `image` must be type `list`")
|
671 |
+
|
672 |
+
# When `image` is a nested list:
|
673 |
+
# (e.g. [[canny_image_1, pose_image_1], [canny_image_2, pose_image_2]])
|
674 |
+
elif any(isinstance(i, list) for i in image):
|
675 |
+
raise ValueError("A single batch of multiple conditionings are supported at the moment.")
|
676 |
+
elif len(image) != len(self.controlnet.nets):
|
677 |
+
raise ValueError(
|
678 |
+
f"For multiple controlnets: `image` must have the same length as the number of controlnets, but got {len(image)} images and {len(self.controlnet.nets)} ControlNets."
|
679 |
+
)
|
680 |
+
|
681 |
+
for image_ in image:
|
682 |
+
self.check_image(image_, prompt, prompt_embeds)
|
683 |
+
else:
|
684 |
+
assert False
|
685 |
+
|
686 |
+
# Check `controlnet_conditioning_scale`
|
687 |
+
if (
|
688 |
+
isinstance(self.controlnet, ControlNetModel)
|
689 |
+
or is_compiled
|
690 |
+
and isinstance(self.controlnet._orig_mod, ControlNetModel)
|
691 |
+
):
|
692 |
+
if not isinstance(controlnet_conditioning_scale, float):
|
693 |
+
raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
|
694 |
+
elif (
|
695 |
+
isinstance(self.controlnet, MultiControlNetModel)
|
696 |
+
or is_compiled
|
697 |
+
and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
|
698 |
+
):
|
699 |
+
if isinstance(controlnet_conditioning_scale, list):
|
700 |
+
if any(isinstance(i, list) for i in controlnet_conditioning_scale):
|
701 |
+
raise ValueError("A single batch of multiple conditionings are supported at the moment.")
|
702 |
+
elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len(
|
703 |
+
self.controlnet.nets
|
704 |
+
):
|
705 |
+
raise ValueError(
|
706 |
+
"For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have"
|
707 |
+
" the same length as the number of controlnets"
|
708 |
+
)
|
709 |
+
else:
|
710 |
+
assert False
|
711 |
+
|
712 |
+
if not isinstance(control_guidance_start, (tuple, list)):
|
713 |
+
control_guidance_start = [control_guidance_start]
|
714 |
+
|
715 |
+
if not isinstance(control_guidance_end, (tuple, list)):
|
716 |
+
control_guidance_end = [control_guidance_end]
|
717 |
+
|
718 |
+
if len(control_guidance_start) != len(control_guidance_end):
|
719 |
+
raise ValueError(
|
720 |
+
f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list."
|
721 |
+
)
|
722 |
+
|
723 |
+
if isinstance(self.controlnet, MultiControlNetModel):
|
724 |
+
if len(control_guidance_start) != len(self.controlnet.nets):
|
725 |
+
raise ValueError(
|
726 |
+
f"`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}."
|
727 |
+
)
|
728 |
+
|
729 |
+
for start, end in zip(control_guidance_start, control_guidance_end):
|
730 |
+
if start >= end:
|
731 |
+
raise ValueError(
|
732 |
+
f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}."
|
733 |
+
)
|
734 |
+
if start < 0.0:
|
735 |
+
raise ValueError(f"control guidance start: {start} can't be smaller than 0.")
|
736 |
+
if end > 1.0:
|
737 |
+
raise ValueError(f"control guidance end: {end} can't be larger than 1.0.")
|
738 |
+
|
739 |
+
# Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.check_image
|
740 |
+
def check_image(self, image, prompt, prompt_embeds):
|
741 |
+
image_is_pil = isinstance(image, PIL.Image.Image)
|
742 |
+
image_is_tensor = isinstance(image, torch.Tensor)
|
743 |
+
image_is_np = isinstance(image, np.ndarray)
|
744 |
+
image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
|
745 |
+
image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor)
|
746 |
+
image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray)
|
747 |
+
|
748 |
+
if (
|
749 |
+
not image_is_pil
|
750 |
+
and not image_is_tensor
|
751 |
+
and not image_is_np
|
752 |
+
and not image_is_pil_list
|
753 |
+
and not image_is_tensor_list
|
754 |
+
and not image_is_np_list
|
755 |
+
):
|
756 |
+
raise TypeError(
|
757 |
+
f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}"
|
758 |
+
)
|
759 |
+
|
760 |
+
if image_is_pil:
|
761 |
+
image_batch_size = 1
|
762 |
+
else:
|
763 |
+
image_batch_size = len(image)
|
764 |
+
|
765 |
+
if prompt is not None and isinstance(prompt, str):
|
766 |
+
prompt_batch_size = 1
|
767 |
+
elif prompt is not None and isinstance(prompt, list):
|
768 |
+
prompt_batch_size = len(prompt)
|
769 |
+
elif prompt_embeds is not None:
|
770 |
+
prompt_batch_size = prompt_embeds.shape[0]
|
771 |
+
|
772 |
+
if image_batch_size != 1 and image_batch_size != prompt_batch_size:
|
773 |
+
raise ValueError(
|
774 |
+
f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
|
775 |
+
)
|
776 |
+
|
777 |
+
# Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.prepare_image
|
778 |
+
def prepare_image(
|
779 |
+
self,
|
780 |
+
image,
|
781 |
+
width,
|
782 |
+
height,
|
783 |
+
batch_size,
|
784 |
+
num_images_per_prompt,
|
785 |
+
device,
|
786 |
+
dtype,
|
787 |
+
do_classifier_free_guidance=False,
|
788 |
+
guess_mode=False,
|
789 |
+
):
|
790 |
+
image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
|
791 |
+
image_batch_size = image.shape[0]
|
792 |
+
|
793 |
+
if image_batch_size == 1:
|
794 |
+
repeat_by = batch_size
|
795 |
+
else:
|
796 |
+
# image batch size is the same as prompt batch size
|
797 |
+
repeat_by = num_images_per_prompt
|
798 |
+
|
799 |
+
image = image.repeat_interleave(repeat_by, dim=0)
|
800 |
+
|
801 |
+
image = image.to(device=device, dtype=dtype)
|
802 |
+
|
803 |
+
if do_classifier_free_guidance and not guess_mode:
|
804 |
+
image = torch.cat([image] * 2)
|
805 |
+
|
806 |
+
return image
|
807 |
+
|
808 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
809 |
+
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
810 |
+
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
811 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
812 |
+
raise ValueError(
|
813 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
814 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
815 |
+
)
|
816 |
+
|
817 |
+
if latents is None:
|
818 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
819 |
+
else:
|
820 |
+
latents = latents.to(device)
|
821 |
+
|
822 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
823 |
+
latents = latents * self.scheduler.init_noise_sigma
|
824 |
+
return latents
|
825 |
+
|
826 |
+
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline._get_add_time_ids
|
827 |
+
def _get_add_time_ids(
|
828 |
+
self, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None
|
829 |
+
):
|
830 |
+
add_time_ids = list(original_size + crops_coords_top_left + target_size)
|
831 |
+
|
832 |
+
passed_add_embed_dim = (
|
833 |
+
self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim
|
834 |
+
)
|
835 |
+
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
|
836 |
+
|
837 |
+
if expected_add_embed_dim != passed_add_embed_dim:
|
838 |
+
raise ValueError(
|
839 |
+
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
|
840 |
+
)
|
841 |
+
|
842 |
+
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
|
843 |
+
return add_time_ids
|
844 |
+
|
845 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
|
846 |
+
def upcast_vae(self):
|
847 |
+
dtype = self.vae.dtype
|
848 |
+
self.vae.to(dtype=torch.float32)
|
849 |
+
use_torch_2_0_or_xformers = isinstance(
|
850 |
+
self.vae.decoder.mid_block.attentions[0].processor,
|
851 |
+
(
|
852 |
+
AttnProcessor2_0,
|
853 |
+
XFormersAttnProcessor,
|
854 |
+
LoRAXFormersAttnProcessor,
|
855 |
+
LoRAAttnProcessor2_0,
|
856 |
+
),
|
857 |
+
)
|
858 |
+
# if xformers or torch_2_0 is used attention block does not need
|
859 |
+
# to be in float32 which can save lots of memory
|
860 |
+
if use_torch_2_0_or_xformers:
|
861 |
+
self.vae.post_quant_conv.to(dtype)
|
862 |
+
self.vae.decoder.conv_in.to(dtype)
|
863 |
+
self.vae.decoder.mid_block.to(dtype)
|
864 |
+
|
865 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_freeu
|
866 |
+
def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
|
867 |
+
r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497.
|
868 |
+
|
869 |
+
The suffixes after the scaling factors represent the stages where they are being applied.
|
870 |
+
|
871 |
+
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values
|
872 |
+
that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
|
873 |
+
|
874 |
+
Args:
|
875 |
+
s1 (`float`):
|
876 |
+
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
|
877 |
+
mitigate "oversmoothing effect" in the enhanced denoising process.
|
878 |
+
s2 (`float`):
|
879 |
+
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
|
880 |
+
mitigate "oversmoothing effect" in the enhanced denoising process.
|
881 |
+
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
|
882 |
+
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
|
883 |
+
"""
|
884 |
+
if not hasattr(self, "unet"):
|
885 |
+
raise ValueError("The pipeline must have `unet` for using FreeU.")
|
886 |
+
self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2)
|
887 |
+
|
888 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_freeu
|
889 |
+
def disable_freeu(self):
|
890 |
+
"""Disables the FreeU mechanism if enabled."""
|
891 |
+
self.unet.disable_freeu()
|
892 |
+
|
893 |
+
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
894 |
+
def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
|
895 |
+
"""
|
896 |
+
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
897 |
+
|
898 |
+
Args:
|
899 |
+
timesteps (`torch.Tensor`):
|
900 |
+
generate embedding vectors at these timesteps
|
901 |
+
embedding_dim (`int`, *optional*, defaults to 512):
|
902 |
+
dimension of the embeddings to generate
|
903 |
+
dtype:
|
904 |
+
data type of the generated embeddings
|
905 |
+
|
906 |
+
Returns:
|
907 |
+
`torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
|
908 |
+
"""
|
909 |
+
assert len(w.shape) == 1
|
910 |
+
w = w * 1000.0
|
911 |
+
|
912 |
+
half_dim = embedding_dim // 2
|
913 |
+
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
|
914 |
+
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
|
915 |
+
emb = w.to(dtype)[:, None] * emb[None, :]
|
916 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
917 |
+
if embedding_dim % 2 == 1: # zero pad
|
918 |
+
emb = torch.nn.functional.pad(emb, (0, 1))
|
919 |
+
assert emb.shape == (w.shape[0], embedding_dim)
|
920 |
+
return emb
|
921 |
+
|
922 |
+
@property
|
923 |
+
def guidance_scale(self):
|
924 |
+
return self._guidance_scale
|
925 |
+
|
926 |
+
@property
|
927 |
+
def clip_skip(self):
|
928 |
+
return self._clip_skip
|
929 |
+
|
930 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
931 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
932 |
+
# corresponds to doing no classifier free guidance.
|
933 |
+
@property
|
934 |
+
def do_classifier_free_guidance(self):
|
935 |
+
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
|
936 |
+
|
937 |
+
@property
|
938 |
+
def cross_attention_kwargs(self):
|
939 |
+
return self._cross_attention_kwargs
|
940 |
+
|
941 |
+
@property
|
942 |
+
def num_timesteps(self):
|
943 |
+
return self._num_timesteps
|
944 |
+
|
945 |
+
@torch.no_grad()
|
946 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
947 |
+
def __call__(
|
948 |
+
self,
|
949 |
+
prompt: Union[str, List[str]] = None,
|
950 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
951 |
+
image: PipelineImageInput = None,
|
952 |
+
height: Optional[int] = None,
|
953 |
+
width: Optional[int] = None,
|
954 |
+
num_inference_steps: int = 50,
|
955 |
+
guidance_scale: float = 5.0,
|
956 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
957 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
958 |
+
num_images_per_prompt: Optional[int] = 1,
|
959 |
+
eta: float = 0.0,
|
960 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
961 |
+
latents: Optional[torch.FloatTensor] = None,
|
962 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
963 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
964 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
965 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
966 |
+
ip_adapter_image: Optional[PipelineImageInput] = None,
|
967 |
+
output_type: Optional[str] = "pil",
|
968 |
+
return_dict: bool = True,
|
969 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
970 |
+
controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
|
971 |
+
guess_mode: bool = False,
|
972 |
+
control_guidance_start: Union[float, List[float]] = 0.0,
|
973 |
+
control_guidance_end: Union[float, List[float]] = 1.0,
|
974 |
+
original_size: Tuple[int, int] = None,
|
975 |
+
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
976 |
+
target_size: Tuple[int, int] = None,
|
977 |
+
negative_original_size: Optional[Tuple[int, int]] = None,
|
978 |
+
negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
|
979 |
+
negative_target_size: Optional[Tuple[int, int]] = None,
|
980 |
+
clip_skip: Optional[int] = None,
|
981 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
982 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
983 |
+
**kwargs,
|
984 |
+
):
|
985 |
+
r"""
|
986 |
+
The call function to the pipeline for generation.
|
987 |
+
|
988 |
+
Args:
|
989 |
+
prompt (`str` or `List[str]`, *optional*):
|
990 |
+
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
991 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
992 |
+
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
993 |
+
used in both text-encoders.
|
994 |
+
image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
|
995 |
+
`List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
|
996 |
+
The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
|
997 |
+
specified as `torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be
|
998 |
+
accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If height
|
999 |
+
and/or width are passed, `image` is resized accordingly. If multiple ControlNets are specified in
|
1000 |
+
`init`, images must be passed as a list such that each element of the list can be correctly batched for
|
1001 |
+
input to a single ControlNet.
|
1002 |
+
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
1003 |
+
The height in pixels of the generated image. Anything below 512 pixels won't work well for
|
1004 |
+
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
1005 |
+
and checkpoints that are not specifically fine-tuned on low resolutions.
|
1006 |
+
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
1007 |
+
The width in pixels of the generated image. Anything below 512 pixels won't work well for
|
1008 |
+
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
1009 |
+
and checkpoints that are not specifically fine-tuned on low resolutions.
|
1010 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
1011 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
1012 |
+
expense of slower inference.
|
1013 |
+
guidance_scale (`float`, *optional*, defaults to 5.0):
|
1014 |
+
A higher guidance scale value encourages the model to generate images closely linked to the text
|
1015 |
+
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
1016 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
1017 |
+
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
1018 |
+
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
1019 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
1020 |
+
The prompt or prompts to guide what to not include in image generation. This is sent to `tokenizer_2`
|
1021 |
+
and `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders.
|
1022 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
1023 |
+
The number of images to generate per prompt.
|
1024 |
+
eta (`float`, *optional*, defaults to 0.0):
|
1025 |
+
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
|
1026 |
+
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
1027 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
1028 |
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
1029 |
+
generation deterministic.
|
1030 |
+
latents (`torch.FloatTensor`, *optional*):
|
1031 |
+
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
1032 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
1033 |
+
tensor is generated by sampling using the supplied random `generator`.
|
1034 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
1035 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
1036 |
+
provided, text embeddings are generated from the `prompt` input argument.
|
1037 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
1038 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
1039 |
+
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
1040 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
1041 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
1042 |
+
not provided, pooled text embeddings are generated from `prompt` input argument.
|
1043 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
1044 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs (prompt
|
1045 |
+
weighting). If not provided, pooled `negative_prompt_embeds` are generated from `negative_prompt` input
|
1046 |
+
argument.
|
1047 |
+
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
1048 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
1049 |
+
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
1050 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
1051 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
1052 |
+
plain tuple.
|
1053 |
+
cross_attention_kwargs (`dict`, *optional*):
|
1054 |
+
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
|
1055 |
+
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
1056 |
+
controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
|
1057 |
+
The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
|
1058 |
+
to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
|
1059 |
+
the corresponding scale as a list.
|
1060 |
+
guess_mode (`bool`, *optional*, defaults to `False`):
|
1061 |
+
The ControlNet encoder tries to recognize the content of the input image even if you remove all
|
1062 |
+
prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended.
|
1063 |
+
control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
|
1064 |
+
The percentage of total steps at which the ControlNet starts applying.
|
1065 |
+
control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
|
1066 |
+
The percentage of total steps at which the ControlNet stops applying.
|
1067 |
+
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
1068 |
+
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
|
1069 |
+
`original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
|
1070 |
+
explained in section 2.2 of
|
1071 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
1072 |
+
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
1073 |
+
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
|
1074 |
+
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
|
1075 |
+
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
|
1076 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
1077 |
+
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
1078 |
+
For most cases, `target_size` should be set to the desired height and width of the generated image. If
|
1079 |
+
not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
|
1080 |
+
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
1081 |
+
negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
1082 |
+
To negatively condition the generation process based on a specific image resolution. Part of SDXL's
|
1083 |
+
micro-conditioning as explained in section 2.2 of
|
1084 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
1085 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
1086 |
+
negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
1087 |
+
To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
|
1088 |
+
micro-conditioning as explained in section 2.2 of
|
1089 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
1090 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
1091 |
+
negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
1092 |
+
To negatively condition the generation process based on a target image resolution. It should be as same
|
1093 |
+
as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
|
1094 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
1095 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
1096 |
+
clip_skip (`int`, *optional*):
|
1097 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
1098 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
1099 |
+
callback_on_step_end (`Callable`, *optional*):
|
1100 |
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
1101 |
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
1102 |
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
1103 |
+
`callback_on_step_end_tensor_inputs`.
|
1104 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
1105 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
1106 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
1107 |
+
`._callback_tensor_inputs` attribute of your pipeine class.
|
1108 |
+
|
1109 |
+
Examples:
|
1110 |
+
|
1111 |
+
Returns:
|
1112 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
1113 |
+
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
|
1114 |
+
otherwise a `tuple` is returned containing the output images.
|
1115 |
+
"""
|
1116 |
+
|
1117 |
+
callback = kwargs.pop("callback", None)
|
1118 |
+
callback_steps = kwargs.pop("callback_steps", None)
|
1119 |
+
|
1120 |
+
if callback is not None:
|
1121 |
+
deprecate(
|
1122 |
+
"callback",
|
1123 |
+
"1.0.0",
|
1124 |
+
"Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
1125 |
+
)
|
1126 |
+
if callback_steps is not None:
|
1127 |
+
deprecate(
|
1128 |
+
"callback_steps",
|
1129 |
+
"1.0.0",
|
1130 |
+
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
1131 |
+
)
|
1132 |
+
|
1133 |
+
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
|
1134 |
+
|
1135 |
+
# align format for control guidance
|
1136 |
+
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
|
1137 |
+
control_guidance_start = len(control_guidance_end) * [control_guidance_start]
|
1138 |
+
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
|
1139 |
+
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
|
1140 |
+
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
|
1141 |
+
mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
|
1142 |
+
control_guidance_start, control_guidance_end = (
|
1143 |
+
mult * [control_guidance_start],
|
1144 |
+
mult * [control_guidance_end],
|
1145 |
+
)
|
1146 |
+
|
1147 |
+
# 1. Check inputs. Raise error if not correct
|
1148 |
+
self.check_inputs(
|
1149 |
+
prompt,
|
1150 |
+
prompt_2,
|
1151 |
+
image,
|
1152 |
+
callback_steps,
|
1153 |
+
negative_prompt,
|
1154 |
+
negative_prompt_2,
|
1155 |
+
prompt_embeds,
|
1156 |
+
negative_prompt_embeds,
|
1157 |
+
pooled_prompt_embeds,
|
1158 |
+
negative_pooled_prompt_embeds,
|
1159 |
+
controlnet_conditioning_scale,
|
1160 |
+
control_guidance_start,
|
1161 |
+
control_guidance_end,
|
1162 |
+
callback_on_step_end_tensor_inputs,
|
1163 |
+
)
|
1164 |
+
|
1165 |
+
self._guidance_scale = guidance_scale
|
1166 |
+
self._clip_skip = clip_skip
|
1167 |
+
self._cross_attention_kwargs = cross_attention_kwargs
|
1168 |
+
|
1169 |
+
# 2. Define call parameters
|
1170 |
+
if prompt is not None and isinstance(prompt, str):
|
1171 |
+
batch_size = 1
|
1172 |
+
elif prompt is not None and isinstance(prompt, list):
|
1173 |
+
batch_size = len(prompt)
|
1174 |
+
else:
|
1175 |
+
batch_size = prompt_embeds.shape[0]
|
1176 |
+
|
1177 |
+
device = self._execution_device
|
1178 |
+
|
1179 |
+
if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
|
1180 |
+
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)
|
1181 |
+
|
1182 |
+
global_pool_conditions = (
|
1183 |
+
controlnet.config.global_pool_conditions
|
1184 |
+
if isinstance(controlnet, ControlNetModel)
|
1185 |
+
else controlnet.nets[0].config.global_pool_conditions
|
1186 |
+
)
|
1187 |
+
guess_mode = guess_mode or global_pool_conditions
|
1188 |
+
|
1189 |
+
# 3.1 Encode input prompt
|
1190 |
+
text_encoder_lora_scale = (
|
1191 |
+
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
|
1192 |
+
)
|
1193 |
+
(
|
1194 |
+
prompt_embeds,
|
1195 |
+
negative_prompt_embeds,
|
1196 |
+
pooled_prompt_embeds,
|
1197 |
+
negative_pooled_prompt_embeds,
|
1198 |
+
) = self.encode_prompt(
|
1199 |
+
prompt,
|
1200 |
+
prompt_2,
|
1201 |
+
device,
|
1202 |
+
num_images_per_prompt,
|
1203 |
+
self.do_classifier_free_guidance,
|
1204 |
+
negative_prompt,
|
1205 |
+
negative_prompt_2,
|
1206 |
+
prompt_embeds=prompt_embeds,
|
1207 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
1208 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
1209 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
1210 |
+
lora_scale=text_encoder_lora_scale,
|
1211 |
+
clip_skip=self.clip_skip,
|
1212 |
+
)
|
1213 |
+
|
1214 |
+
# 3.2 Encode ip_adapter_image
|
1215 |
+
if ip_adapter_image is not None:
|
1216 |
+
image_embeds = self.prepare_ip_adapter_image_embeds(
|
1217 |
+
ip_adapter_image, device, batch_size * num_images_per_prompt
|
1218 |
+
)
|
1219 |
+
|
1220 |
+
# 4. Prepare image
|
1221 |
+
if isinstance(controlnet, ControlNetModel):
|
1222 |
+
image = self.prepare_image(
|
1223 |
+
image=image,
|
1224 |
+
width=width,
|
1225 |
+
height=height,
|
1226 |
+
batch_size=batch_size * num_images_per_prompt,
|
1227 |
+
num_images_per_prompt=num_images_per_prompt,
|
1228 |
+
device=device,
|
1229 |
+
dtype=controlnet.dtype,
|
1230 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
1231 |
+
guess_mode=guess_mode,
|
1232 |
+
)
|
1233 |
+
height, width = image.shape[-2:]
|
1234 |
+
height, width = height*self.vae_scale_factor, width*self.vae_scale_factor # for vae controlnet
|
1235 |
+
elif isinstance(controlnet, MultiControlNetModel):
|
1236 |
+
images = []
|
1237 |
+
|
1238 |
+
for image_ in image:
|
1239 |
+
image_ = self.prepare_image(
|
1240 |
+
image=image_,
|
1241 |
+
width=width,
|
1242 |
+
height=height,
|
1243 |
+
batch_size=batch_size * num_images_per_prompt,
|
1244 |
+
num_images_per_prompt=num_images_per_prompt,
|
1245 |
+
device=device,
|
1246 |
+
dtype=controlnet.dtype,
|
1247 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
1248 |
+
guess_mode=guess_mode,
|
1249 |
+
)
|
1250 |
+
|
1251 |
+
images.append(image_)
|
1252 |
+
|
1253 |
+
image = images
|
1254 |
+
height, width = image[0].shape[-2:]
|
1255 |
+
else:
|
1256 |
+
assert False
|
1257 |
+
|
1258 |
+
# 5. Prepare timesteps
|
1259 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
1260 |
+
timesteps = self.scheduler.timesteps
|
1261 |
+
self._num_timesteps = len(timesteps)
|
1262 |
+
|
1263 |
+
# 6. Prepare latent variables
|
1264 |
+
num_channels_latents = self.unet.config.in_channels
|
1265 |
+
latents = self.prepare_latents(
|
1266 |
+
batch_size * num_images_per_prompt,
|
1267 |
+
num_channels_latents,
|
1268 |
+
height,
|
1269 |
+
width,
|
1270 |
+
prompt_embeds.dtype,
|
1271 |
+
device,
|
1272 |
+
generator,
|
1273 |
+
latents,
|
1274 |
+
)
|
1275 |
+
|
1276 |
+
# 6.5 Optionally get Guidance Scale Embedding
|
1277 |
+
timestep_cond = None
|
1278 |
+
if self.unet.config.time_cond_proj_dim is not None:
|
1279 |
+
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
|
1280 |
+
timestep_cond = self.get_guidance_scale_embedding(
|
1281 |
+
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
|
1282 |
+
).to(device=device, dtype=latents.dtype)
|
1283 |
+
|
1284 |
+
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
1285 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
1286 |
+
|
1287 |
+
# 7.1 Create tensor stating which controlnets to keep
|
1288 |
+
controlnet_keep = []
|
1289 |
+
for i in range(len(timesteps)):
|
1290 |
+
keeps = [
|
1291 |
+
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
|
1292 |
+
for s, e in zip(control_guidance_start, control_guidance_end)
|
1293 |
+
]
|
1294 |
+
controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)
|
1295 |
+
|
1296 |
+
# 7.2 Prepare added time ids & embeddings
|
1297 |
+
if isinstance(image, list):
|
1298 |
+
original_size = original_size or image[0].shape[-2:]
|
1299 |
+
else:
|
1300 |
+
original_size = original_size or image.shape[-2:]
|
1301 |
+
target_size = target_size or (height, width)
|
1302 |
+
|
1303 |
+
add_text_embeds = pooled_prompt_embeds
|
1304 |
+
if self.text_encoder_2 is None:
|
1305 |
+
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
|
1306 |
+
else:
|
1307 |
+
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
|
1308 |
+
|
1309 |
+
add_time_ids = self._get_add_time_ids(
|
1310 |
+
original_size,
|
1311 |
+
crops_coords_top_left,
|
1312 |
+
target_size,
|
1313 |
+
dtype=prompt_embeds.dtype,
|
1314 |
+
text_encoder_projection_dim=text_encoder_projection_dim,
|
1315 |
+
)
|
1316 |
+
|
1317 |
+
if negative_original_size is not None and negative_target_size is not None:
|
1318 |
+
negative_add_time_ids = self._get_add_time_ids(
|
1319 |
+
negative_original_size,
|
1320 |
+
negative_crops_coords_top_left,
|
1321 |
+
negative_target_size,
|
1322 |
+
dtype=prompt_embeds.dtype,
|
1323 |
+
text_encoder_projection_dim=text_encoder_projection_dim,
|
1324 |
+
)
|
1325 |
+
else:
|
1326 |
+
negative_add_time_ids = add_time_ids
|
1327 |
+
|
1328 |
+
if self.do_classifier_free_guidance:
|
1329 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
1330 |
+
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
1331 |
+
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
|
1332 |
+
|
1333 |
+
prompt_embeds = prompt_embeds.to(device)
|
1334 |
+
add_text_embeds = add_text_embeds.to(device)
|
1335 |
+
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
|
1336 |
+
|
1337 |
+
# 8. Denoising loop
|
1338 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
1339 |
+
is_unet_compiled = is_compiled_module(self.unet)
|
1340 |
+
is_controlnet_compiled = is_compiled_module(self.controlnet)
|
1341 |
+
is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1")
|
1342 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
1343 |
+
for i, t in enumerate(timesteps):
|
1344 |
+
# Relevant thread:
|
1345 |
+
# https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428
|
1346 |
+
if (is_unet_compiled and is_controlnet_compiled) and is_torch_higher_equal_2_1:
|
1347 |
+
torch._inductor.cudagraph_mark_step_begin()
|
1348 |
+
# expand the latents if we are doing classifier free guidance
|
1349 |
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
1350 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
1351 |
+
|
1352 |
+
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
1353 |
+
|
1354 |
+
# controlnet(s) inference
|
1355 |
+
if guess_mode and self.do_classifier_free_guidance:
|
1356 |
+
# Infer ControlNet only for the conditional batch.
|
1357 |
+
control_model_input = latents
|
1358 |
+
control_model_input = self.scheduler.scale_model_input(control_model_input, t)
|
1359 |
+
controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
|
1360 |
+
controlnet_added_cond_kwargs = {
|
1361 |
+
"text_embeds": add_text_embeds.chunk(2)[1],
|
1362 |
+
"time_ids": add_time_ids.chunk(2)[1],
|
1363 |
+
}
|
1364 |
+
else:
|
1365 |
+
control_model_input = latent_model_input
|
1366 |
+
controlnet_prompt_embeds = prompt_embeds
|
1367 |
+
controlnet_added_cond_kwargs = added_cond_kwargs
|
1368 |
+
|
1369 |
+
if isinstance(controlnet_keep[i], list):
|
1370 |
+
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
|
1371 |
+
else:
|
1372 |
+
controlnet_cond_scale = controlnet_conditioning_scale
|
1373 |
+
if isinstance(controlnet_cond_scale, list):
|
1374 |
+
controlnet_cond_scale = controlnet_cond_scale[0]
|
1375 |
+
cond_scale = controlnet_cond_scale * controlnet_keep[i]
|
1376 |
+
|
1377 |
+
down_block_res_samples, mid_block_res_sample = self.controlnet(
|
1378 |
+
control_model_input,
|
1379 |
+
t,
|
1380 |
+
encoder_hidden_states=controlnet_prompt_embeds,
|
1381 |
+
controlnet_cond=image,
|
1382 |
+
conditioning_scale=cond_scale,
|
1383 |
+
guess_mode=guess_mode,
|
1384 |
+
added_cond_kwargs=controlnet_added_cond_kwargs,
|
1385 |
+
return_dict=False,
|
1386 |
+
)
|
1387 |
+
|
1388 |
+
if guess_mode and self.do_classifier_free_guidance:
|
1389 |
+
# Infered ControlNet only for the conditional batch.
|
1390 |
+
# To apply the output of ControlNet to both the unconditional and conditional batches,
|
1391 |
+
# add 0 to the unconditional batch to keep it unchanged.
|
1392 |
+
down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
|
1393 |
+
mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
|
1394 |
+
|
1395 |
+
if ip_adapter_image is not None:
|
1396 |
+
added_cond_kwargs["image_embeds"] = image_embeds
|
1397 |
+
|
1398 |
+
# predict the noise residual
|
1399 |
+
noise_pred = self.unet(
|
1400 |
+
latent_model_input,
|
1401 |
+
t,
|
1402 |
+
encoder_hidden_states=prompt_embeds,
|
1403 |
+
timestep_cond=timestep_cond,
|
1404 |
+
cross_attention_kwargs=self.cross_attention_kwargs,
|
1405 |
+
down_block_additional_residuals=down_block_res_samples,
|
1406 |
+
mid_block_additional_residual=mid_block_res_sample,
|
1407 |
+
added_cond_kwargs=added_cond_kwargs,
|
1408 |
+
return_dict=False,
|
1409 |
+
)[0]
|
1410 |
+
|
1411 |
+
# perform guidance
|
1412 |
+
if self.do_classifier_free_guidance:
|
1413 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
1414 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1415 |
+
|
1416 |
+
# compute the previous noisy sample x_t -> x_t-1
|
1417 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
1418 |
+
|
1419 |
+
if callback_on_step_end is not None:
|
1420 |
+
callback_kwargs = {}
|
1421 |
+
for k in callback_on_step_end_tensor_inputs:
|
1422 |
+
callback_kwargs[k] = locals()[k]
|
1423 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
1424 |
+
|
1425 |
+
latents = callback_outputs.pop("latents", latents)
|
1426 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
1427 |
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
1428 |
+
|
1429 |
+
# call the callback, if provided
|
1430 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
1431 |
+
progress_bar.update()
|
1432 |
+
if callback is not None and i % callback_steps == 0:
|
1433 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
1434 |
+
callback(step_idx, t, latents)
|
1435 |
+
|
1436 |
+
if not output_type == "latent":
|
1437 |
+
# make sure the VAE is in float32 mode, as it overflows in float16
|
1438 |
+
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
1439 |
+
|
1440 |
+
if needs_upcasting:
|
1441 |
+
self.upcast_vae()
|
1442 |
+
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
1443 |
+
|
1444 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
1445 |
+
|
1446 |
+
# cast back to fp16 if needed
|
1447 |
+
if needs_upcasting:
|
1448 |
+
self.vae.to(dtype=torch.float16)
|
1449 |
+
else:
|
1450 |
+
image = latents
|
1451 |
+
|
1452 |
+
if not output_type == "latent":
|
1453 |
+
# apply watermark if available
|
1454 |
+
if self.watermark is not None:
|
1455 |
+
image = self.watermark.apply_watermark(image)
|
1456 |
+
|
1457 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
1458 |
+
|
1459 |
+
# Offload all models
|
1460 |
+
self.maybe_free_model_hooks()
|
1461 |
+
|
1462 |
+
if not return_dict:
|
1463 |
+
return (image,)
|
1464 |
+
|
1465 |
+
return StableDiffusionXLPipelineOutput(images=image)
|
replace_bg/utilities.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
def resize_image(image)->Image.Image:
|
7 |
+
pixel_number = 1024*1024
|
8 |
+
granularity_val = 64
|
9 |
+
ratio = image.size[0] / image.size[1]
|
10 |
+
width = int((pixel_number * ratio) ** 0.5)
|
11 |
+
width = width - (width % granularity_val)
|
12 |
+
height = int(pixel_number / width)
|
13 |
+
height = height - (height % granularity_val)
|
14 |
+
return image.resize((width, height))
|
15 |
+
|
16 |
+
def get_masked_background_image(image, image_mask)->tuple:
|
17 |
+
image_mask_pil = image_mask.resize(image.size) # fg is white
|
18 |
+
image = np.array(image.convert("RGB")).transpose(2, 0, 1).astype(np.float32) / 255.0
|
19 |
+
image_mask = np.array(image_mask_pil.convert("L")).astype(np.float32) / 255.0
|
20 |
+
image[:,image_mask < 0.5] = 0 # mask background
|
21 |
+
return image, image_mask
|
22 |
+
|
23 |
+
def get_control_image_tensor(vae, image, mask)->torch.Tensor:
|
24 |
+
masked_image, image_mask = get_masked_background_image(image, mask)
|
25 |
+
masked_image_tensor = torch.from_numpy(masked_image)
|
26 |
+
masked_image_tensor = (masked_image_tensor - 0.5) / 0.5 # normalize for vae
|
27 |
+
masked_image_tensor = masked_image_tensor.unsqueeze(0).to(device="cuda:0")
|
28 |
+
# encode the image to get the control latents
|
29 |
+
control_latents = vae.encode(
|
30 |
+
masked_image_tensor[:, :3, :, :].to(vae.dtype)
|
31 |
+
).latent_dist.sample()
|
32 |
+
control_latents = control_latents * vae.config.scaling_factor
|
33 |
+
|
34 |
+
mask_tensor = torch.tensor(image_mask, dtype=torch.float32)[None, None, ...].to(device="cuda:0")
|
35 |
+
mask_tensor = torch.where(mask_tensor > 0.5, 1.0, 0) # binarize the mask
|
36 |
+
mask_resized = torch.nn.functional.interpolate(mask_tensor, size=(control_latents.shape[2], control_latents.shape[3]), mode='nearest')
|
37 |
+
control_tensor = torch.cat([control_latents, mask_resized], dim=1)
|
38 |
+
return control_tensor
|
39 |
+
|
40 |
+
def remove_bg_from_image(image_path: str)->Image.Image:
|
41 |
+
from transformers import pipeline
|
42 |
+
pipe = pipeline("image-segmentation", model="briaai/RMBG-1.4", trust_remote_code=True)
|
43 |
+
mask = pipe(image_path, return_mask = True) # outputs a pillow mask
|
44 |
+
return mask
|
45 |
+
|
46 |
+
def paste_fg_over_image(gen_image: Image.Image, orig_image: Image.Image, fg_mask: Image.Image)->Image.Image:
|
47 |
+
fg_mask = fg_mask.convert("L")
|
48 |
+
fg_mask = fg_mask.resize(orig_image.size, Image.NEAREST)
|
49 |
+
gen_image = gen_image.convert("RGBA")
|
50 |
+
orig_image = orig_image.convert("RGBA")
|
51 |
+
gen_image.paste(orig_image, (0, 0), fg_mask)
|
52 |
+
return gen_image.convert("RGB")
|