Spaces:
Runtime error
Runtime error
brianjking
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
from llama_index import (
|
4 |
+
ServiceContext,
|
5 |
+
SimpleDirectoryReader,
|
6 |
+
VectorStoreIndex,
|
7 |
+
)
|
8 |
+
|
9 |
+
# Import OpenAI only once, avoiding naming conflict
|
10 |
+
from openai import OpenAI as OpenAIClient
|
11 |
+
|
12 |
+
client = OpenAIClient(api_key=os.getenv("OPENAI_API_KEY"))
|
13 |
+
|
14 |
+
# Define Streamlit layout and interaction
|
15 |
+
st.title("Grounded Generations")
|
16 |
+
|
17 |
+
# Upload PDF
|
18 |
+
uploaded_file = st.file_uploader("Choose a PDF file", type="pdf")
|
19 |
+
|
20 |
+
@st.cache_resource(show_spinner=False)
|
21 |
+
def load_data(uploaded_file):
|
22 |
+
with st.spinner('Indexing document...'):
|
23 |
+
# Save the uploaded file temporarily
|
24 |
+
with open("temp.pdf", "wb") as f:
|
25 |
+
f.write(uploaded_file.read())
|
26 |
+
# Read and index documents using SimpleDirectoryReader
|
27 |
+
reader = SimpleDirectoryReader(input_dir="./", recursive=False)
|
28 |
+
docs = reader.load_data()
|
29 |
+
# The model configuration should be moved to where you actually call the OpenAI API
|
30 |
+
service_context = ServiceContext.from_defaults(
|
31 |
+
system_prompt="You are an AI assistant that uses context from a PDF to assist the user in generating text."
|
32 |
+
)
|
33 |
+
index = VectorStoreIndex.from_documents(docs, service_context=service_context)
|
34 |
+
return index
|
35 |
+
|
36 |
+
# Placeholder for document indexing
|
37 |
+
if uploaded_file is not None:
|
38 |
+
index = load_data(uploaded_file)
|
39 |
+
|
40 |
+
# Take user query input
|
41 |
+
user_query = st.text_input("Search for the products/info you want to use to ground your generated text content:")
|
42 |
+
|
43 |
+
# Initialize session_state for retrieved_text if not already present
|
44 |
+
if 'retrieved_text' not in st.session_state:
|
45 |
+
st.session_state['retrieved_text'] = ''
|
46 |
+
|
47 |
+
# Search and display retrieved text
|
48 |
+
if st.button("Retrieve"):
|
49 |
+
with st.spinner('Retrieving text...'):
|
50 |
+
# Use VectorStoreIndex to search
|
51 |
+
query_engine = index.as_query_engine(similarity_top_k=3)
|
52 |
+
st.session_state['retrieved_text'] = query_engine.query(user_query)
|
53 |
+
st.write(f"Retrieved Text: {st.session_state['retrieved_text']}")
|
54 |
+
|
55 |
+
# Select content type
|
56 |
+
content_type = st.selectbox("Select content type:", ["Blog", "Tweet"])
|
57 |
+
|
58 |
+
# Generate text based on retrieved text and selected content type
|
59 |
+
if st.button("Generate") and content_type:
|
60 |
+
with st.spinner('Generating text...'):
|
61 |
+
try:
|
62 |
+
prompt = f"Write a blog about 500 words in length using {st.session_state['retrieved_text']}" if content_type == "Blog" else f"Compose a tweet using {st.session_state['retrieved_text']}"
|
63 |
+
response = client.chat.completions.create(model="gpt-3.5-turbo-16k",
|
64 |
+
messages=[
|
65 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
66 |
+
{"role": "user", "content": prompt}
|
67 |
+
])
|
68 |
+
generated_text = response.choices[0].message.content
|
69 |
+
st.write(f"Generated Text: {generated_text}")
|
70 |
+
except Exception as e:
|
71 |
+
st.write(f"An error occurred: {e}")
|