import streamlit as st import os from llama_index import ( ServiceContext, SimpleDirectoryReader, VectorStoreIndex, ) # Import OpenAI only once, avoiding naming conflict from openai import OpenAI as OpenAIClient client = OpenAIClient(api_key=os.getenv("OPENAI_API_KEY")) # Define Streamlit layout and interaction st.title("Grounded Generations") # Upload PDF uploaded_file = st.file_uploader("Choose a PDF file", type="pdf") @st.cache_resource(show_spinner=False) def load_data(uploaded_file): with st.spinner('Indexing document...'): # Save the uploaded file temporarily with open("temp.pdf", "wb") as f: f.write(uploaded_file.read()) # Read and index documents using SimpleDirectoryReader reader = SimpleDirectoryReader(input_dir="./", recursive=False) docs = reader.load_data() # The model configuration should be moved to where you actually call the OpenAI API service_context = ServiceContext.from_defaults( system_prompt="You are an AI assistant that uses context from a PDF to assist the user in generating text." ) index = VectorStoreIndex.from_documents(docs, service_context=service_context) return index # Placeholder for document indexing if uploaded_file is not None: index = load_data(uploaded_file) # Take user query input user_query = st.text_input("Search for the products/info you want to use to ground your generated text content:") # Initialize session_state for retrieved_text if not already present if 'retrieved_text' not in st.session_state: st.session_state['retrieved_text'] = '' # Search and display retrieved text if st.button("Retrieve"): with st.spinner('Retrieving text...'): # Use VectorStoreIndex to search query_engine = index.as_query_engine(similarity_top_k=3) st.session_state['retrieved_text'] = query_engine.query(user_query) st.write(f"Retrieved Text: {st.session_state['retrieved_text']}") # Select content type content_type = st.selectbox("Select content type:", ["Blog", "Tweet"]) # Generate text based on retrieved text and selected content type if st.button("Generate") and content_type: with st.spinner('Generating text...'): try: prompt = f"Write an engaging blog that is about 500 words in length using the content from the product catalog to ground the content in factuaility. Here is the content: {st.session_state['retrieved_text']}" if content_type == "Blog" else f"Compose a tweet using {st.session_state['retrieved_text']}" response = client.chat.completions.create(model="gpt-3.5-turbo-0125", messages=[ {"role": "system", "content": "You are a helpful assistant that writes compelling and interesting marketing copy such as blogs and tweets."}, {"role": "user", "content": prompt} ]) generated_text = response.choices[0].message.content st.write(f"Generated Text: {generated_text}") except Exception as e: st.write(f"An error occurred: {e}")