Spaces:
Sleeping
Sleeping
brianjking
commited on
Commit
•
3b8cc91
1
Parent(s):
f9fdaeb
Update app.py
Browse files
app.py
CHANGED
@@ -6,7 +6,7 @@ from llama_index import (
|
|
6 |
VectorStoreIndex,
|
7 |
)
|
8 |
from llama_index.llms import OpenAI
|
9 |
-
import
|
10 |
|
11 |
# Define Streamlit layout and interaction
|
12 |
st.title("Grounded Generations")
|
@@ -25,7 +25,7 @@ def load_data(uploaded_file):
|
|
25 |
docs = reader.load_data()
|
26 |
service_context = ServiceContext.from_defaults(
|
27 |
llm=OpenAI(
|
28 |
-
model="gpt-3.5-turbo-
|
29 |
temperature=0.1,
|
30 |
),
|
31 |
system_prompt="You are an AI assistant that uses context from a PDF to assist the user in generating text."
|
@@ -48,12 +48,12 @@ if 'retrieved_text' not in st.session_state:
|
|
48 |
if st.button("Retrieve"):
|
49 |
with st.spinner('Retrieving text...'):
|
50 |
# Use VectorStoreIndex to search
|
51 |
-
query_engine = index.as_query_engine(similarity_top_k=3)
|
52 |
st.session_state['retrieved_text'] = query_engine.query(user_query)
|
53 |
-
st.write(f"Retrieved Text: {st.session_state['retrieved_text']}")
|
54 |
|
55 |
# Select content type
|
56 |
-
content_type = st.selectbox("Select content type:", ["Blog", "Tweet"])
|
57 |
|
58 |
# Generate text based on retrieved text and selected content type
|
59 |
if st.button("Generate") and content_type:
|
@@ -62,17 +62,17 @@ if st.button("Generate") and content_type:
|
|
62 |
openai.api_key = os.getenv("OPENAI_API_KEY")
|
63 |
try:
|
64 |
if content_type == "Blog":
|
65 |
-
prompt = f"Write a blog about 500 words in length using the {st.session_state['retrieved_text']}"
|
66 |
elif content_type == "Tweet":
|
67 |
prompt = f"Compose a tweet using the {st.session_state['retrieved_text']}"
|
68 |
response = openai.ChatCompletion.create(
|
69 |
-
model="gpt-3.5-turbo-
|
70 |
messages=[
|
71 |
{"role": "system", "content": "You are a helpful assistant."},
|
72 |
{"role": "user", "content": prompt}
|
73 |
]
|
74 |
)
|
75 |
-
generated_text = response
|
76 |
st.write(f"Generated Text: {generated_text}")
|
77 |
except Exception as e:
|
78 |
st.write(f"An error occurred: {e}")
|
|
|
6 |
VectorStoreIndex,
|
7 |
)
|
8 |
from llama_index.llms import OpenAI
|
9 |
+
from openai import OpenAI
|
10 |
|
11 |
# Define Streamlit layout and interaction
|
12 |
st.title("Grounded Generations")
|
|
|
25 |
docs = reader.load_data()
|
26 |
service_context = ServiceContext.from_defaults(
|
27 |
llm=OpenAI(
|
28 |
+
model="gpt-3.5-turbo-0125", # Updated model
|
29 |
temperature=0.1,
|
30 |
),
|
31 |
system_prompt="You are an AI assistant that uses context from a PDF to assist the user in generating text."
|
|
|
48 |
if st.button("Retrieve"):
|
49 |
with st.spinner('Retrieving text...'):
|
50 |
# Use VectorStoreIndex to search
|
51 |
+
query_engine = index.as_query_engine(similarity_top_k=3)
|
52 |
st.session_state['retrieved_text'] = query_engine.query(user_query)
|
53 |
+
st.write(f"Retrieved Text: {st.session_state['retrieved_text']}")
|
54 |
|
55 |
# Select content type
|
56 |
+
content_type = st.selectbox("Select content type:", ["Blog", "Tweet"])
|
57 |
|
58 |
# Generate text based on retrieved text and selected content type
|
59 |
if st.button("Generate") and content_type:
|
|
|
62 |
openai.api_key = os.getenv("OPENAI_API_KEY")
|
63 |
try:
|
64 |
if content_type == "Blog":
|
65 |
+
prompt = f"Write a blog about 500 words in length using the {st.session_state['retrieved_text']}"
|
66 |
elif content_type == "Tweet":
|
67 |
prompt = f"Compose a tweet using the {st.session_state['retrieved_text']}"
|
68 |
response = openai.ChatCompletion.create(
|
69 |
+
model="gpt-3.5-turbo-0125", # Updated model
|
70 |
messages=[
|
71 |
{"role": "system", "content": "You are a helpful assistant."},
|
72 |
{"role": "user", "content": prompt}
|
73 |
]
|
74 |
)
|
75 |
+
generated_text = response.choices[0].message.content
|
76 |
st.write(f"Generated Text: {generated_text}")
|
77 |
except Exception as e:
|
78 |
st.write(f"An error occurred: {e}")
|