import streamlit as st import os import tempfile from llama_index import ( ServiceContext, SimpleDirectoryReader, VectorStoreIndex, ) from llama_index.llms import OpenAI import openai st.title("Grounded Generation") uploaded_files = st.file_uploader("Choose PDF files", type="pdf", accept_multiple_files=True) @st.cache_resource(show_spinner=False) def load_data(uploaded_files): with st.spinner('Indexing documents...'): temp_dir = tempfile.mkdtemp() # Create temporary directory file_paths = [] # List to store paths of saved files # Save the uploaded files temporarily for i, uploaded_file in enumerate(uploaded_files): temp_path = os.path.join(temp_dir, f"temp_{i}.pdf") with open(temp_path, "wb") as f: f.write(uploaded_file.read()) file_paths.append(temp_path) # Read and index documents using SimpleDirectoryReader reader = SimpleDirectoryReader(input_dir=temp_dir, recursive=False) docs = reader.load_data() service_context = ServiceContext.from_defaults( llm=OpenAI( model="gpt-3.5-turbo-16k", temperature=0.1, ), system_prompt="You are an AI assistant that uses context from PDFs to assist the user in generating text." ) index = VectorStoreIndex.from_documents(docs, service_context=service_context) # Clean up temporary files and directory for file_path in file_paths: os.remove(file_path) os.rmdir(temp_dir) return index if uploaded_files: index = load_data(uploaded_files) user_query = st.text_input("Search for the products/info you want to use to ground your generated text content:") if 'retrieved_text' not in st.session_state: st.session_state['retrieved_text'] = '' if st.button("Retrieve"): with st.spinner('Retrieving text...'): query_engine = index.as_query_engine(similarity_top_k=1) st.session_state['retrieved_text'] = query_engine.query(user_query) st.write(f"Retrieved Text: {st.session_state['retrieved_text']}") content_type = st.selectbox("Select content type:", ["Blog", "Tweet"]) if st.button("Generate") and content_type: with st.spinner('Generating text...'): openai.api_key = os.getenv("OPENAI_API_KEY") try: if content_type == "Blog": prompt = f"Write a blog about 500 words in length using the {st.session_state['retrieved_text']}" elif content_type == "Tweet": prompt = f"Compose a tweet using the {st.session_state['retrieved_text']}" response = openai.ChatCompletion.create( model="gpt-3.5-turbo-16k", messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": prompt} ] ) generated_text = response['choices'][0]['message']['content'] st.write(f"Generated Text: {generated_text}") except Exception as e: st.write(f"An error occurred: {e}")