File size: 8,537 Bytes
aee77fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
from openai import OpenAI
from pydantic import BaseModel
from typing import List, Optional
import gradio as gr
class Step(BaseModel):
explanation: str
output: str
class Subtopics(BaseModel):
steps: List[Step]
result: List[str]
class Topics(BaseModel):
result: List[Subtopics]
class CardFront(BaseModel):
question: Optional[str] = None
class CardBack(BaseModel):
answer: Optional[str] = None
explanation: str
example: str
class Card(BaseModel):
front: CardFront
back: CardBack
class CardList(BaseModel):
topic: str
cards: List[Card]
def structured_output_completion(
client, model, response_format, system_prompt, user_prompt
):
try:
completion = client.beta.chat.completions.parse(
model=model,
messages=[
{"role": "system", "content": system_prompt.strip()},
{"role": "user", "content": user_prompt.strip()},
],
response_format=response_format,
)
except Exception as e:
print(f"An error occurred during the API call: {e}")
return None
try:
if not hasattr(completion, "choices") or not completion.choices:
print("No choices returned in the completion.")
return None
first_choice = completion.choices[0]
if not hasattr(first_choice, "message"):
print("No message found in the first choice.")
return None
if not hasattr(first_choice.message, "parsed"):
print("Parsed message not available in the first choice.")
return None
return first_choice.message.parsed
except Exception as e:
print(f"An error occurred while processing the completion: {e}")
raise gr.Error(f"Processing error: {e}")
def generate_cards(
api_key_input,
subject,
topic_number=1,
cards_per_topic=2,
preference_prompt="assume I'm a beginner",
):
"""
Generates flashcards for a given subject.
Parameters:
- subject (str): The subject to generate cards for.
- topic_number (int): Number of topics to generate.
- cards_per_topic (int): Number of cards per topic.
- preference_prompt (str): User preferences to consider.
Returns:
- List[List[str]]: A list of rows containing
[topic, question, answer, explanation, example].
"""
gr.Info("Starting process")
if not api_key_input:
return gr.Error("Error: OpenAI API key is required.")
client = OpenAI(api_key=api_key_input)
model = "gpt-4o-mini"
all_card_lists = []
system_prompt = f"""
You are an expert in {subject}, assisting the user to master the topic while
keeping in mind the user's preferences: {preference_prompt}.
"""
topic_prompt = f"""
Generate the top {topic_number} important subjects to know on {subject} in
order of ascending difficulty.
"""
try:
topics_response = structured_output_completion(
client, model, Topics, system_prompt, topic_prompt
)
if topics_response is None:
print("Failed to generate topics.")
return []
if not hasattr(topics_response, "result") or not topics_response.result:
print("Invalid topics response format.")
return []
topic_list = [
item for subtopic in topics_response.result for item in subtopic.result
][:topic_number]
except Exception as e:
raise gr.Error(f"Topic generation failed due to {e}")
for topic in topic_list:
card_prompt = f"""
You are to generate {cards_per_topic} cards on {subject}: "{topic}"
keeping in mind the user's preferences: {preference_prompt}.
Questions should cover both sample problems and concepts.
Use the explanation field to help the user understand the reason behind things
and maximize learning. Additionally, offer tips (performance, gotchas, etc.).
"""
try:
cards = structured_output_completion(
client, model, CardList, system_prompt, card_prompt
)
if cards is None:
print(f"Failed to generate cards for topic '{topic}'.")
continue
if not hasattr(cards, "topic") or not hasattr(cards, "cards"):
print(f"Invalid card response format for topic '{topic}'.")
continue
all_card_lists.append(cards)
except Exception as e:
print(f"An error occurred while generating cards for topic '{topic}': {e}")
continue
flattened_data = []
for card_list_index, card_list in enumerate(all_card_lists, start=1):
try:
topic = card_list.topic
# Get the total number of cards in this list to determine padding
total_cards = len(card_list.cards)
# Calculate the number of digits needed for padding
padding = len(str(total_cards))
for card_index, card in enumerate(card_list.cards, start=1):
# Format the index with zero-padding
index = f"{card_list_index}.{card_index:0{padding}}"
question = card.front.question
answer = card.back.answer
explanation = card.back.explanation
example = card.back.example
row = [index, topic, question, answer, explanation, example]
flattened_data.append(row)
except Exception as e:
print(f"An error occurred while processing card {index}: {e}")
continue
return flattened_data
def export_csv(d):
MIN_ROWS = 2
if len(d) < MIN_ROWS:
gr.Warning(f"The dataframe has fewer than {MIN_ROWS} rows. Nothing to export.")
return None
gr.Info("Exporting...")
d.to_csv("anki_deck.csv", index=False)
return gr.File(value="anki_deck.csv", visible=True)
with gr.Blocks(
gr.themes.Soft(), title="AnkiGen", css="footer{display:none !important}"
) as ankigen:
gr.Markdown("# π AnkiGen - Anki Card Generator")
gr.Markdown(
"""
#### Generate an Anki comptible .csv using LLMs based on your subject and preferences.
"""
)
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Configuration")
api_key_input = gr.Textbox(
label="OpenAI API Key",
type="password",
placeholder="Enter your OpenAI API key",
)
subject = gr.Textbox(
label="Subject",
placeholder="Enter the subject, e.g., 'Basic SQL Concepts'",
)
topic_number = gr.Slider(
label="Number of Topics", minimum=2, maximum=20, step=1, value=2
)
cards_per_topic = gr.Slider(
label="Cards per Topic", minimum=2, maximum=30, step=1, value=3
)
preference_prompt = gr.Textbox(
label="Preference Prompt",
placeholder="Any preferences? e.g., 'Assume I'm a beginner'",
)
generate_button = gr.Button("Generate Cards")
with gr.Column(scale=2):
gr.Markdown("### Generated Cards")
gr.Markdown(
"""
Subject to change: currently exports a .csv with the following fields, you can
create a new note type with these fields to handle importing.:
<b>Index, Topic, Question, Answer, Explanation, Example</b>
""")
output = gr.Dataframe(
headers=[
"Index",
"Topic",
"Question",
"Answer",
"Explanation",
"Example",
],
interactive=False,
height=800,
)
export_button = gr.Button("Export to CSV")
download_link = gr.File(interactive=False, visible=False)
generate_button.click(
fn=generate_cards,
inputs=[
api_key_input,
subject,
topic_number,
cards_per_topic,
preference_prompt,
],
outputs=output,
)
export_button.click(fn=export_csv, inputs=output, outputs=download_link)
if __name__ == "__main__":
ankigen.launch(share=False, favicon_path="./favicon.ico")
|