from openai import OpenAI from pydantic import BaseModel from typing import List, Optional import gradio as gr class Step(BaseModel): explanation: str output: str class Subtopics(BaseModel): steps: List[Step] result: List[str] class Topics(BaseModel): result: List[Subtopics] class CardFront(BaseModel): question: Optional[str] = None class CardBack(BaseModel): answer: Optional[str] = None explanation: str example: str class Card(BaseModel): front: CardFront back: CardBack class CardList(BaseModel): topic: str cards: List[Card] def structured_output_completion( client, model, response_format, system_prompt, user_prompt ): try: completion = client.beta.chat.completions.parse( model=model, messages=[ {"role": "system", "content": system_prompt.strip()}, {"role": "user", "content": user_prompt.strip()}, ], response_format=response_format, ) except Exception as e: print(f"An error occurred during the API call: {e}") return None try: if not hasattr(completion, "choices") or not completion.choices: print("No choices returned in the completion.") return None first_choice = completion.choices[0] if not hasattr(first_choice, "message"): print("No message found in the first choice.") return None if not hasattr(first_choice.message, "parsed"): print("Parsed message not available in the first choice.") return None return first_choice.message.parsed except Exception as e: print(f"An error occurred while processing the completion: {e}") raise gr.Error(f"Processing error: {e}") def generate_cards( api_key_input, subject, topic_number=1, cards_per_topic=2, preference_prompt="assume I'm a beginner", ): """ Generates flashcards for a given subject. Parameters: - subject (str): The subject to generate cards for. - topic_number (int): Number of topics to generate. - cards_per_topic (int): Number of cards per topic. - preference_prompt (str): User preferences to consider. Returns: - List[List[str]]: A list of rows containing [topic, question, answer, explanation, example]. """ gr.Info("Starting process") if not api_key_input: return gr.Error("Error: OpenAI API key is required.") client = OpenAI(api_key=api_key_input) model = "gpt-4o-mini" all_card_lists = [] system_prompt = f""" You are an expert in {subject}, assisting the user to master the topic while keeping in mind the user's preferences: {preference_prompt}. """ topic_prompt = f""" Generate the top {topic_number} important subjects to know on {subject} in order of ascending difficulty. """ try: topics_response = structured_output_completion( client, model, Topics, system_prompt, topic_prompt ) if topics_response is None: print("Failed to generate topics.") return [] if not hasattr(topics_response, "result") or not topics_response.result: print("Invalid topics response format.") return [] topic_list = [ item for subtopic in topics_response.result for item in subtopic.result ][:topic_number] except Exception as e: raise gr.Error(f"Topic generation failed due to {e}") for topic in topic_list: card_prompt = f""" You are to generate {cards_per_topic} cards on {subject}: "{topic}" keeping in mind the user's preferences: {preference_prompt}. Questions should cover both sample problems and concepts. Use the explanation field to help the user understand the reason behind things and maximize learning. Additionally, offer tips (performance, gotchas, etc.). """ try: cards = structured_output_completion( client, model, CardList, system_prompt, card_prompt ) if cards is None: print(f"Failed to generate cards for topic '{topic}'.") continue if not hasattr(cards, "topic") or not hasattr(cards, "cards"): print(f"Invalid card response format for topic '{topic}'.") continue all_card_lists.append(cards) except Exception as e: print(f"An error occurred while generating cards for topic '{topic}': {e}") continue flattened_data = [] for card_list_index, card_list in enumerate(all_card_lists, start=1): try: topic = card_list.topic # Get the total number of cards in this list to determine padding total_cards = len(card_list.cards) # Calculate the number of digits needed for padding padding = len(str(total_cards)) for card_index, card in enumerate(card_list.cards, start=1): # Format the index with zero-padding index = f"{card_list_index}.{card_index:0{padding}}" question = card.front.question answer = card.back.answer explanation = card.back.explanation example = card.back.example row = [index, topic, question, answer, explanation, example] flattened_data.append(row) except Exception as e: print(f"An error occurred while processing card {index}: {e}") continue return flattened_data def export_csv(d): MIN_ROWS = 2 if len(d) < MIN_ROWS: gr.Warning(f"The dataframe has fewer than {MIN_ROWS} rows. Nothing to export.") return None gr.Info("Exporting...") d.to_csv("anki_deck.csv", index=False) return gr.File(value="anki_deck.csv", visible=True) with gr.Blocks( gr.themes.Soft(), title="AnkiGen", css="footer{display:none !important}" ) as ankigen: gr.Markdown("# 📚 AnkiGen - Anki Card Generator") gr.Markdown("#### Generate an LLM generated Anki comptible csv based on your subject and preferences.") #noqa with gr.Row(): with gr.Column(scale=1): gr.Markdown("### Configuration") api_key_input = gr.Textbox( label="OpenAI API Key", type="password", placeholder="Enter your OpenAI API key", ) subject = gr.Textbox( label="Subject", placeholder="Enter the subject, e.g., 'Basic SQL Concepts'", ) topic_number = gr.Slider( label="Number of Topics", minimum=2, maximum=20, step=1, value=2 ) cards_per_topic = gr.Slider( label="Cards per Topic", minimum=2, maximum=30, step=1, value=3 ) preference_prompt = gr.Textbox( label="Preference Prompt", placeholder= """Any preferences? For example: Learning level, e.g., "Assume I'm a beginner" or "Target an advanced audience" Content scope, e.g., "Only cover up until subqueries in SQL" or "Focus on organic chemistry basics""", #noqa ) generate_button = gr.Button("Generate Cards") with gr.Column(scale=2): gr.Markdown("### Generated Cards") gr.Markdown( """ Subject to change: currently exports a .csv with the following fields, you can create a new note type with these fields to handle importing.: Index, Topic, Question, Answer, Explanation, Example """ ) output = gr.Dataframe( headers=[ "Index", "Topic", "Question", "Answer", "Explanation", "Example", ], interactive=False, height=800, ) export_button = gr.Button("Export to CSV") download_link = gr.File(interactive=False, visible=False) generate_button.click( fn=generate_cards, inputs=[ api_key_input, subject, topic_number, cards_per_topic, preference_prompt, ], outputs=output, ) export_button.click(fn=export_csv, inputs=output, outputs=download_link) if __name__ == "__main__": ankigen.launch(share=False, favicon_path="./favicon.ico")