Spaces:
Runtime error
Runtime error
import streamlit as st | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
# load the pre-trained model and tokenizer | |
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-multilingual-cased") | |
model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-multilingual-cased") | |
# define the Streamlit app | |
def app(): | |
# set the app title | |
st.title("Sentence Similarity Checker") | |
# get the input sentences from the user | |
sentence1 = st.text_input("Enter the first sentence:") | |
sentence2 = st.text_input("Enter the second sentence:") | |
# check if both sentences are not empty | |
if sentence1 and sentence2: | |
# tokenize the sentences and get the output logits for the sentence pair classification task | |
inputs = tokenizer(sentence1, sentence2, padding=True, truncation=True, max_length=250, return_tensors="pt") | |
outputs = model(**inputs).logits | |
# calculate the softmax probabilities for the two classes (similar or dissimilar) | |
probs = outputs.softmax(dim=1) | |
# the probability of the sentences being similar is the second element of the output array | |
similarity_score = probs[0][1].item() | |
# display the similarity score to the user | |
st.write("Similarity score:", similarity_score) |