emiliosheinz commited on
Commit
4c9ba47
1 Parent(s): acf0ee9

remove app def

Browse files
Files changed (1) hide show
  1. app.py +19 -21
app.py CHANGED
@@ -5,26 +5,24 @@ from transformers import AutoTokenizer, AutoModelForSequenceClassification
5
  tokenizer = AutoTokenizer.from_pretrained("distilbert-base-multilingual-cased")
6
  model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-multilingual-cased")
7
 
8
- # define the Streamlit app
9
- def app():
10
- # set the app title
11
- st.title("Sentence Similarity Checker")
 
 
 
 
 
 
 
 
 
 
 
12
 
13
- # get the input sentences from the user
14
- sentence1 = st.text_input("Enter the first sentence:")
15
- sentence2 = st.text_input("Enter the second sentence:")
16
 
17
- # check if both sentences are not empty
18
- if sentence1 and sentence2:
19
- # tokenize the sentences and get the output logits for the sentence pair classification task
20
- inputs = tokenizer(sentence1, sentence2, padding=True, truncation=True, max_length=250, return_tensors="pt")
21
- outputs = model(**inputs).logits
22
-
23
- # calculate the softmax probabilities for the two classes (similar or dissimilar)
24
- probs = outputs.softmax(dim=1)
25
-
26
- # the probability of the sentences being similar is the second element of the output array
27
- similarity_score = probs[0][1].item()
28
-
29
- # display the similarity score to the user
30
- st.write("Similarity score:", similarity_score)
 
5
  tokenizer = AutoTokenizer.from_pretrained("distilbert-base-multilingual-cased")
6
  model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-multilingual-cased")
7
 
8
+ # set the app title
9
+ st.title("Sentence Similarity Checker")
10
+
11
+ # get the input sentences from the user
12
+ sentence1 = st.text_input("Enter the first sentence:")
13
+ sentence2 = st.text_input("Enter the second sentence:")
14
+
15
+ # check if both sentences are not empty
16
+ if sentence1 and sentence2:
17
+ # tokenize the sentences and get the output logits for the sentence pair classification task
18
+ inputs = tokenizer(sentence1, sentence2, padding=True, truncation=True, max_length=250, return_tensors="pt")
19
+ outputs = model(**inputs).logits
20
+
21
+ # calculate the softmax probabilities for the two classes (similar or dissimilar)
22
+ probs = outputs.softmax(dim=1)
23
 
24
+ # the probability of the sentences being similar is the second element of the output array
25
+ similarity_score = probs[0][1].item()
 
26
 
27
+ # display the similarity score to the user
28
+ st.write("Similarity score:", similarity_score)