Spaces:
Runtime error
Runtime error
brjathu
commited on
Commit
β’
29a229f
1
Parent(s):
2cbaea4
Adding HF files
Browse filesThis view is limited to 50 files because it contains too many changes. Β
See raw diff
- .gitignore +145 -0
- README.md +4 -4
- README_github.md +74 -0
- app.py +149 -0
- app_mesh.py +141 -0
- clean_ckpt.ipynb +93 -0
- demo.py +130 -0
- environment.yml +20 -0
- fetch_data.sh +2 -0
- hmr2/__init__.py +0 -0
- hmr2/configs/__init__.py +88 -0
- hmr2/datasets/__init__.py +0 -0
- hmr2/datasets/utils.py +999 -0
- hmr2/datasets/vitdet_dataset.py +89 -0
- hmr2/models/__init__.py +3 -0
- hmr2/models/backbones/__init__.py +7 -0
- hmr2/models/backbones/vit.py +348 -0
- hmr2/models/backbones/vit_vitpose.py +17 -0
- hmr2/models/components/__init__.py +0 -0
- hmr2/models/components/pose_transformer.py +358 -0
- hmr2/models/components/t_cond_mlp.py +199 -0
- hmr2/models/discriminator.py +99 -0
- hmr2/models/heads/__init__.py +1 -0
- hmr2/models/heads/smpl_head.py +111 -0
- hmr2/models/hmr2.py +363 -0
- hmr2/models/losses.py +92 -0
- hmr2/models/smpl_wrapper.py +41 -0
- hmr2/utils/__init__.py +25 -0
- hmr2/utils/geometry.py +102 -0
- hmr2/utils/mesh_renderer.py +149 -0
- hmr2/utils/pose_utils.py +306 -0
- hmr2/utils/render_openpose.py +149 -0
- hmr2/utils/renderer.py +396 -0
- hmr2/utils/skeleton_renderer.py +122 -0
- hmr2/utils/texture_utils.py +85 -0
- hmr2/utils/utils_detectron2.py +93 -0
- requirements.txt +29 -0
- setup.py +8 -0
- vendor/detectron2/.circleci/config.yml +271 -0
- vendor/detectron2/.circleci/import-tests.sh +16 -0
- vendor/detectron2/.clang-format +85 -0
- vendor/detectron2/.flake8 +15 -0
- vendor/detectron2/.github/CODE_OF_CONDUCT.md +5 -0
- vendor/detectron2/.github/CONTRIBUTING.md +68 -0
- vendor/detectron2/.github/Detectron2-Logo-Horz.svg +1 -0
- vendor/detectron2/.github/ISSUE_TEMPLATE.md +5 -0
- vendor/detectron2/.github/ISSUE_TEMPLATE/bugs.md +38 -0
- vendor/detectron2/.github/ISSUE_TEMPLATE/config.yml +17 -0
- vendor/detectron2/.github/ISSUE_TEMPLATE/documentation.md +14 -0
- vendor/detectron2/.github/ISSUE_TEMPLATE/feature-request.md +31 -0
.gitignore
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Specific
|
2 |
+
/logs*/
|
3 |
+
/results/
|
4 |
+
/sandbox/
|
5 |
+
*.lock
|
6 |
+
*.pt
|
7 |
+
*.npy
|
8 |
+
/example_data/downloaded*
|
9 |
+
*.tar
|
10 |
+
*.tar.gz
|
11 |
+
/discord_sandbox/
|
12 |
+
/demo_out/
|
13 |
+
token_channel.csv
|
14 |
+
|
15 |
+
# Byte-compiled / optimized / DLL files
|
16 |
+
__pycache__/
|
17 |
+
*.py[cod]
|
18 |
+
*$py.class
|
19 |
+
logs/
|
20 |
+
# C extensions
|
21 |
+
*.so
|
22 |
+
|
23 |
+
# Distribution / packaging
|
24 |
+
.Python
|
25 |
+
build/
|
26 |
+
develop-eggs/
|
27 |
+
dist/
|
28 |
+
downloads/
|
29 |
+
eggs/
|
30 |
+
.eggs/
|
31 |
+
lib/
|
32 |
+
lib64/
|
33 |
+
parts/
|
34 |
+
sdist/
|
35 |
+
var/
|
36 |
+
wheels/
|
37 |
+
pip-wheel-metadata/
|
38 |
+
share/python-wheels/
|
39 |
+
*.egg-info/
|
40 |
+
.installed.cfg
|
41 |
+
*.egg
|
42 |
+
MANIFEST
|
43 |
+
|
44 |
+
# PyInstaller
|
45 |
+
# Usually these files are written by a python script from a template
|
46 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
47 |
+
*.manifest
|
48 |
+
*.spec
|
49 |
+
|
50 |
+
# Installer logs
|
51 |
+
pip-log.txt
|
52 |
+
pip-delete-this-directory.txt
|
53 |
+
|
54 |
+
# Unit test / coverage reports
|
55 |
+
htmlcov/
|
56 |
+
.tox/
|
57 |
+
.nox/
|
58 |
+
.coverage
|
59 |
+
.coverage.*
|
60 |
+
.cache
|
61 |
+
nosetests.xml
|
62 |
+
coverage.xml
|
63 |
+
*.cover
|
64 |
+
*.py,cover
|
65 |
+
.hypothesis/
|
66 |
+
.pytest_cache/
|
67 |
+
|
68 |
+
# Translations
|
69 |
+
*.mo
|
70 |
+
*.pot
|
71 |
+
|
72 |
+
# Django stuff:
|
73 |
+
*.log
|
74 |
+
local_settings.py
|
75 |
+
db.sqlite3
|
76 |
+
db.sqlite3-journal
|
77 |
+
|
78 |
+
# Flask stuff:
|
79 |
+
instance/
|
80 |
+
.webassets-cache
|
81 |
+
|
82 |
+
# Scrapy stuff:
|
83 |
+
.scrapy
|
84 |
+
|
85 |
+
# Sphinx documentation
|
86 |
+
docs/_build/
|
87 |
+
|
88 |
+
# PyBuilder
|
89 |
+
target/
|
90 |
+
|
91 |
+
# Jupyter Notebook
|
92 |
+
.ipynb_checkpoints
|
93 |
+
|
94 |
+
# IPython
|
95 |
+
profile_default/
|
96 |
+
ipython_config.py
|
97 |
+
|
98 |
+
# pyenv
|
99 |
+
.python-version
|
100 |
+
|
101 |
+
# pipenv
|
102 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
103 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
104 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
105 |
+
# install all needed dependencies.
|
106 |
+
#Pipfile.lock
|
107 |
+
|
108 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
|
109 |
+
__pypackages__/
|
110 |
+
|
111 |
+
# Celery stuff
|
112 |
+
celerybeat-schedule
|
113 |
+
celerybeat.pid
|
114 |
+
|
115 |
+
# SageMath parsed files
|
116 |
+
*.sage.py
|
117 |
+
|
118 |
+
# Environments
|
119 |
+
.env
|
120 |
+
.venv
|
121 |
+
env/
|
122 |
+
venv/
|
123 |
+
ENV/
|
124 |
+
env.bak/
|
125 |
+
venv.bak/
|
126 |
+
|
127 |
+
# Spyder project settings
|
128 |
+
.spyderproject
|
129 |
+
.spyproject
|
130 |
+
|
131 |
+
# Rope project settings
|
132 |
+
.ropeproject
|
133 |
+
|
134 |
+
# mkdocs documentation
|
135 |
+
/site
|
136 |
+
|
137 |
+
# mypy
|
138 |
+
.mypy_cache/
|
139 |
+
.dmypy.json
|
140 |
+
dmypy.json
|
141 |
+
|
142 |
+
# Pyre type checker
|
143 |
+
.pyre/
|
144 |
+
/checkpoints/
|
145 |
+
/data/
|
README.md
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.32.0
|
8 |
app_file: app.py
|
|
|
1 |
---
|
2 |
+
title: HMR2.0
|
3 |
+
emoji: π₯
|
4 |
+
colorFrom: yellow
|
5 |
+
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.32.0
|
8 |
app_file: app.py
|
README_github.md
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# 4DHumans: Reconstructing and Tracking Humans with Transformers
|
2 |
+
Code repository for the paper:
|
3 |
+
**Humans in 4D: Reconstructing and Tracking Humans with Transformers**
|
4 |
+
[Shubham Goel](https://people.eecs.berkeley.edu/~shubham-goel/), [Georgios Pavlakos](https://geopavlakos.github.io/), [Jathushan Rajasegaran](http://people.eecs.berkeley.edu/~jathushan/), [Angjoo Kanazawa](https://people.eecs.berkeley.edu/~kanazawa/)<sup>\*</sup>, [Jitendra Malik](http://people.eecs.berkeley.edu/~malik/)<sup>\*</sup>
|
5 |
+
arXiv preprint 2023
|
6 |
+
[[paper]()] [[project page](https://shubham-goel.github.io/4dhumans/)] [[hugging faces space]()]
|
7 |
+
|
8 |
+
![teaser](assets/teaser.png)
|
9 |
+
|
10 |
+
## Download dependencies
|
11 |
+
Our demo code depends on [detectron2](https://github.com/facebookresearch/detectron2) to detect humans.
|
12 |
+
To automatically download this dependency, clone this repo using `--recursive`, or run `git submodule update --init` if you've already cloned the repository. You should see the detectron2 source code at `vendor/detectron2`.
|
13 |
+
```bash
|
14 |
+
git clone https://github.com/shubham-goel/4D-Humans.git --recursive
|
15 |
+
# OR
|
16 |
+
git clone https://github.com/shubham-goel/4D-Humans.git
|
17 |
+
cd 4D-Humans
|
18 |
+
git submodule update --init
|
19 |
+
```
|
20 |
+
|
21 |
+
## Installation
|
22 |
+
We recommend creating a clean [conda](https://docs.conda.io/) environment and installing all dependencies, as follows:
|
23 |
+
```bash
|
24 |
+
conda env create -f environment.yml
|
25 |
+
```
|
26 |
+
|
27 |
+
After the installation is complete you can activate the conda environment by running:
|
28 |
+
```
|
29 |
+
conda activate 4D-humans
|
30 |
+
```
|
31 |
+
|
32 |
+
## Download checkpoints and SMPL models
|
33 |
+
To download the checkpoints and SMPL models, run
|
34 |
+
```bash
|
35 |
+
./fetch_data.sh
|
36 |
+
```
|
37 |
+
|
38 |
+
## Run demo on images
|
39 |
+
You may now run our demo to 3D reconstruct humans in images using the following command, which will run ViTDet and HMR2.0 on all images in the specified `--img_folder` and save renderings of the reconstructions in `--out_folder`. You can also use the `--side_view` flag to additionally render the side view of the reconstructed mesh. `--batch_size` batches the images together for faster processing.
|
40 |
+
```bash
|
41 |
+
python demo.py \
|
42 |
+
--img_folder example_data/images \
|
43 |
+
--out_folder demo_out \
|
44 |
+
--batch_size=48 --side_view
|
45 |
+
```
|
46 |
+
|
47 |
+
## Run demo on videos
|
48 |
+
Coming soon.
|
49 |
+
|
50 |
+
## Training and evaluation
|
51 |
+
Cmoing soon.
|
52 |
+
|
53 |
+
## Acknowledgements
|
54 |
+
Parts of the code are taken or adapted from the following repos:
|
55 |
+
- [ProHMR](https://github.com/nkolot/ProHMR)
|
56 |
+
- [SPIN](https://github.com/nkolot/SPIN)
|
57 |
+
- [SMPLify-X](https://github.com/vchoutas/smplify-x)
|
58 |
+
- [HMR](https://github.com/akanazawa/hmr)
|
59 |
+
- [ViTPose](https://github.com/ViTAE-Transformer/ViTPose)
|
60 |
+
- [Detectron2](https://github.com/facebookresearch/detectron2)
|
61 |
+
|
62 |
+
Additionally, we thank [StabilityAI](https://stability.ai/) for a generous compute grant that enabled this work.
|
63 |
+
|
64 |
+
## Citing
|
65 |
+
If you find this code useful for your research, please consider citing the following paper:
|
66 |
+
|
67 |
+
```
|
68 |
+
@article{4DHUMANS,
|
69 |
+
title={Humans in 4{D}: Reconstructing and Tracking Humans with Transformers},
|
70 |
+
author={Goel, Shubham and Pavlakos, Georgios and Rajasegaran, Jathushan and Kanazawa, Angjoo and Malik, Jitendra},
|
71 |
+
journal={arXiv preprint},
|
72 |
+
year={2023}
|
73 |
+
}
|
74 |
+
```
|
app.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
from pathlib import Path
|
4 |
+
|
5 |
+
import cv2
|
6 |
+
import gradio as gr
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
from PIL import Image
|
10 |
+
|
11 |
+
from hmr2.configs import get_config
|
12 |
+
from hmr2.datasets.vitdet_dataset import (DEFAULT_MEAN, DEFAULT_STD,
|
13 |
+
ViTDetDataset)
|
14 |
+
from hmr2.models import HMR2
|
15 |
+
from hmr2.utils import recursive_to
|
16 |
+
from hmr2.utils.renderer import Renderer, cam_crop_to_full
|
17 |
+
|
18 |
+
# Setup HMR2.0 model
|
19 |
+
LIGHT_BLUE=(0.65098039, 0.74117647, 0.85882353)
|
20 |
+
DEFAULT_CHECKPOINT='logs/train/multiruns/hmr2/0/checkpoints/epoch=35-step=1000000.ckpt'
|
21 |
+
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
22 |
+
model_cfg = str(Path(DEFAULT_CHECKPOINT).parent.parent / 'model_config.yaml')
|
23 |
+
model_cfg = get_config(model_cfg)
|
24 |
+
model = HMR2.load_from_checkpoint(DEFAULT_CHECKPOINT, strict=False, cfg=model_cfg).to(device)
|
25 |
+
model.eval()
|
26 |
+
|
27 |
+
|
28 |
+
# Load detector
|
29 |
+
from detectron2.config import LazyConfig
|
30 |
+
|
31 |
+
from hmr2.utils.utils_detectron2 import DefaultPredictor_Lazy
|
32 |
+
|
33 |
+
detectron2_cfg = LazyConfig.load(f"vendor/detectron2/projects/ViTDet/configs/COCO/cascade_mask_rcnn_vitdet_h_75ep.py")
|
34 |
+
detectron2_cfg.train.init_checkpoint = "https://dl.fbaipublicfiles.com/detectron2/ViTDet/COCO/cascade_mask_rcnn_vitdet_h/f328730692/model_final_f05665.pkl"
|
35 |
+
for i in range(3):
|
36 |
+
detectron2_cfg.model.roi_heads.box_predictors[i].test_score_thresh = 0.25
|
37 |
+
detector = DefaultPredictor_Lazy(detectron2_cfg)
|
38 |
+
|
39 |
+
# Setup the renderer
|
40 |
+
renderer = Renderer(model_cfg, faces=model.smpl.faces)
|
41 |
+
|
42 |
+
|
43 |
+
import numpy as np
|
44 |
+
|
45 |
+
|
46 |
+
def infer(in_pil_img, in_threshold=0.8, out_pil_img=None):
|
47 |
+
|
48 |
+
open_cv_image = np.array(in_pil_img)
|
49 |
+
# Convert RGB to BGR
|
50 |
+
open_cv_image = open_cv_image[:, :, ::-1].copy()
|
51 |
+
print("EEEEE", open_cv_image.shape)
|
52 |
+
det_out = detector(open_cv_image)
|
53 |
+
det_instances = det_out['instances']
|
54 |
+
valid_idx = (det_instances.pred_classes==0) & (det_instances.scores > in_threshold)
|
55 |
+
boxes=det_instances.pred_boxes.tensor[valid_idx].cpu().numpy()
|
56 |
+
|
57 |
+
# Run HMR2.0 on all detected humans
|
58 |
+
dataset = ViTDetDataset(model_cfg, open_cv_image, boxes)
|
59 |
+
dataloader = torch.utils.data.DataLoader(dataset, batch_size=8, shuffle=False, num_workers=0)
|
60 |
+
|
61 |
+
all_verts = []
|
62 |
+
all_cam_t = []
|
63 |
+
|
64 |
+
for batch in dataloader:
|
65 |
+
batch = recursive_to(batch, device)
|
66 |
+
with torch.no_grad():
|
67 |
+
out = model(batch)
|
68 |
+
|
69 |
+
pred_cam = out['pred_cam']
|
70 |
+
box_center = batch["box_center"].float()
|
71 |
+
box_size = batch["box_size"].float()
|
72 |
+
img_size = batch["img_size"].float()
|
73 |
+
render_size = img_size
|
74 |
+
pred_cam_t = cam_crop_to_full(pred_cam, box_center, box_size, render_size).detach().cpu().numpy()
|
75 |
+
|
76 |
+
# Render the result
|
77 |
+
batch_size = batch['img'].shape[0]
|
78 |
+
for n in range(batch_size):
|
79 |
+
# Get filename from path img_path
|
80 |
+
# img_fn, _ = os.path.splitext(os.path.basename(img_path))
|
81 |
+
person_id = int(batch['personid'][n])
|
82 |
+
white_img = (torch.ones_like(batch['img'][n]).cpu() - DEFAULT_MEAN[:,None,None]/255) / (DEFAULT_STD[:,None,None]/255)
|
83 |
+
input_patch = batch['img'][n].cpu() * (DEFAULT_STD[:,None,None]/255) + (DEFAULT_MEAN[:,None,None]/255)
|
84 |
+
input_patch = input_patch.permute(1,2,0).numpy()
|
85 |
+
|
86 |
+
regression_img = renderer(out['pred_vertices'][n].detach().cpu().numpy(),
|
87 |
+
out['pred_cam_t'][n].detach().cpu().numpy(),
|
88 |
+
batch['img'][n],
|
89 |
+
mesh_base_color=LIGHT_BLUE,
|
90 |
+
scene_bg_color=(1, 1, 1),
|
91 |
+
)
|
92 |
+
|
93 |
+
|
94 |
+
verts = out['pred_vertices'][n].detach().cpu().numpy()
|
95 |
+
cam_t = pred_cam_t[n]
|
96 |
+
|
97 |
+
all_verts.append(verts)
|
98 |
+
all_cam_t.append(cam_t)
|
99 |
+
|
100 |
+
|
101 |
+
# Render front view
|
102 |
+
if len(all_verts) > 0:
|
103 |
+
misc_args = dict(
|
104 |
+
mesh_base_color=LIGHT_BLUE,
|
105 |
+
scene_bg_color=(1, 1, 1),
|
106 |
+
)
|
107 |
+
cam_view = renderer.render_rgba_multiple(all_verts, cam_t=all_cam_t, render_res=render_size[n], **misc_args)
|
108 |
+
|
109 |
+
# Overlay image
|
110 |
+
input_img = open_cv_image.astype(np.float32)[:,:,::-1]/255.0
|
111 |
+
input_img = np.concatenate([input_img, np.ones_like(input_img[:,:,:1])], axis=2) # Add alpha channel
|
112 |
+
input_img_overlay = input_img[:,:,:3] * (1-cam_view[:,:,3:]) + cam_view[:,:,:3] * cam_view[:,:,3:]
|
113 |
+
|
114 |
+
# convert to PIL image
|
115 |
+
out_pil_img = Image.fromarray((input_img_overlay*255).astype(np.uint8))
|
116 |
+
|
117 |
+
return out_pil_img
|
118 |
+
else:
|
119 |
+
return None
|
120 |
+
|
121 |
+
|
122 |
+
with gr.Blocks(title="4DHumans", css=".gradio-container") as demo:
|
123 |
+
|
124 |
+
gr.HTML("""<div style="font-weight:bold; text-align:center; color:royalblue;">HMR 2.0</div>""")
|
125 |
+
|
126 |
+
with gr.Row():
|
127 |
+
input_image = gr.Image(label="Input image", type="pil", width=300, height=300, fixed_size=True)
|
128 |
+
output_image = gr.Image(label="Reconstructions", type="pil", width=300, height=300, fixed_size=True)
|
129 |
+
|
130 |
+
gr.HTML("""<br/>""")
|
131 |
+
|
132 |
+
with gr.Row():
|
133 |
+
threshold = gr.Slider(0, 1.0, value=0.8, label='Detection Threshold')
|
134 |
+
send_btn = gr.Button("Infer")
|
135 |
+
send_btn.click(fn=infer, inputs=[input_image, threshold], outputs=[output_image])
|
136 |
+
|
137 |
+
# gr.Examples(['samples/img1.jpg', 'samples/img2.png', 'samples/img3.jpg', 'samples/img4.jpg'], inputs=input_image)
|
138 |
+
|
139 |
+
gr.HTML("""</ul>""")
|
140 |
+
|
141 |
+
|
142 |
+
|
143 |
+
#demo.queue()
|
144 |
+
demo.launch(debug=True)
|
145 |
+
|
146 |
+
|
147 |
+
|
148 |
+
|
149 |
+
### EOF ###
|
app_mesh.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
from pathlib import Path
|
4 |
+
|
5 |
+
import cv2
|
6 |
+
import gradio as gr
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
from PIL import Image
|
10 |
+
import trimesh
|
11 |
+
import tempfile
|
12 |
+
|
13 |
+
from hmr2.configs import get_config
|
14 |
+
from hmr2.datasets.vitdet_dataset import (DEFAULT_MEAN, DEFAULT_STD,
|
15 |
+
ViTDetDataset)
|
16 |
+
from hmr2.models import HMR2
|
17 |
+
from hmr2.utils import recursive_to
|
18 |
+
from hmr2.utils.renderer import Renderer, cam_crop_to_full
|
19 |
+
|
20 |
+
# Setup HMR2.0 model
|
21 |
+
LIGHT_BLUE=(0.65098039, 0.74117647, 0.85882353)
|
22 |
+
DEFAULT_CHECKPOINT='logs/train/multiruns/hmr2/0/checkpoints/epoch=35-step=1000000.ckpt'
|
23 |
+
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
24 |
+
model_cfg = str(Path(DEFAULT_CHECKPOINT).parent.parent / 'model_config.yaml')
|
25 |
+
model_cfg = get_config(model_cfg)
|
26 |
+
model = HMR2.load_from_checkpoint(DEFAULT_CHECKPOINT, strict=False, cfg=model_cfg).to(device)
|
27 |
+
model.eval()
|
28 |
+
|
29 |
+
|
30 |
+
# Load detector
|
31 |
+
from detectron2.config import LazyConfig
|
32 |
+
|
33 |
+
from hmr2.utils.utils_detectron2 import DefaultPredictor_Lazy
|
34 |
+
|
35 |
+
detectron2_cfg = LazyConfig.load(f"vendor/detectron2/projects/ViTDet/configs/COCO/cascade_mask_rcnn_vitdet_h_75ep.py")
|
36 |
+
detectron2_cfg.train.init_checkpoint = "https://dl.fbaipublicfiles.com/detectron2/ViTDet/COCO/cascade_mask_rcnn_vitdet_h/f328730692/model_final_f05665.pkl"
|
37 |
+
for i in range(3):
|
38 |
+
detectron2_cfg.model.roi_heads.box_predictors[i].test_score_thresh = 0.25
|
39 |
+
detector = DefaultPredictor_Lazy(detectron2_cfg)
|
40 |
+
|
41 |
+
# Setup the renderer
|
42 |
+
renderer = Renderer(model_cfg, faces=model.smpl.faces)
|
43 |
+
|
44 |
+
|
45 |
+
import numpy as np
|
46 |
+
|
47 |
+
|
48 |
+
def infer(in_pil_img, in_threshold=0.8):
|
49 |
+
|
50 |
+
open_cv_image = np.array(in_pil_img)
|
51 |
+
# Convert RGB to BGR
|
52 |
+
open_cv_image = open_cv_image[:, :, ::-1].copy()
|
53 |
+
print("EEEEE", open_cv_image.shape)
|
54 |
+
det_out = detector(open_cv_image)
|
55 |
+
det_instances = det_out['instances']
|
56 |
+
valid_idx = (det_instances.pred_classes==0) & (det_instances.scores > in_threshold)
|
57 |
+
boxes=det_instances.pred_boxes.tensor[valid_idx].cpu().numpy()
|
58 |
+
|
59 |
+
# Run HMR2.0 on all detected humans
|
60 |
+
dataset = ViTDetDataset(model_cfg, open_cv_image, boxes)
|
61 |
+
dataloader = torch.utils.data.DataLoader(dataset, batch_size=8, shuffle=False, num_workers=0)
|
62 |
+
|
63 |
+
all_verts = []
|
64 |
+
all_cam_t = []
|
65 |
+
|
66 |
+
for batch in dataloader:
|
67 |
+
batch = recursive_to(batch, device)
|
68 |
+
with torch.no_grad():
|
69 |
+
out = model(batch)
|
70 |
+
|
71 |
+
pred_cam = out['pred_cam']
|
72 |
+
box_center = batch["box_center"].float()
|
73 |
+
box_size = batch["box_size"].float()
|
74 |
+
img_size = batch["img_size"].float()
|
75 |
+
render_size = img_size
|
76 |
+
pred_cam_t = cam_crop_to_full(pred_cam, box_center, box_size, render_size, focal_length=img_size.mean()*2).detach().cpu().numpy()
|
77 |
+
|
78 |
+
# Render the result
|
79 |
+
batch_size = batch['img'].shape[0]
|
80 |
+
for n in range(batch_size):
|
81 |
+
# Get filename from path img_path
|
82 |
+
# img_fn, _ = os.path.splitext(os.path.basename(img_path))
|
83 |
+
person_id = int(batch['personid'][n])
|
84 |
+
white_img = (torch.ones_like(batch['img'][n]).cpu() - DEFAULT_MEAN[:,None,None]/255) / (DEFAULT_STD[:,None,None]/255)
|
85 |
+
input_patch = batch['img'][n].cpu() * (DEFAULT_STD[:,None,None]/255) + (DEFAULT_MEAN[:,None,None]/255)
|
86 |
+
input_patch = input_patch.permute(1,2,0).numpy()
|
87 |
+
|
88 |
+
regression_img = renderer(out['pred_vertices'][n].detach().cpu().numpy(),
|
89 |
+
out['pred_cam_t'][n].detach().cpu().numpy(),
|
90 |
+
batch['img'][n],
|
91 |
+
mesh_base_color=LIGHT_BLUE,
|
92 |
+
scene_bg_color=(1, 1, 1),
|
93 |
+
)
|
94 |
+
|
95 |
+
|
96 |
+
verts = out['pred_vertices'][n].detach().cpu().numpy()
|
97 |
+
cam_t = pred_cam_t[n]
|
98 |
+
|
99 |
+
all_verts.append(verts)
|
100 |
+
all_cam_t.append(cam_t)
|
101 |
+
|
102 |
+
# Return mesh path
|
103 |
+
trimeshes = [renderer.vertices_to_trimesh(vvv, ttt.copy(), LIGHT_BLUE) for vvv,ttt in zip(all_verts, all_cam_t)]
|
104 |
+
|
105 |
+
# Join meshes
|
106 |
+
mesh = trimesh.util.concatenate(trimeshes)
|
107 |
+
|
108 |
+
# Save mesh to file
|
109 |
+
temp_name = next(tempfile._get_candidate_names()) + '.obj'
|
110 |
+
trimesh.exchange.export.export_mesh(mesh, temp_name)
|
111 |
+
return temp_name
|
112 |
+
|
113 |
+
|
114 |
+
with gr.Blocks(title="4DHumans", css=".gradio-container") as demo:
|
115 |
+
|
116 |
+
gr.HTML("""<div style="font-weight:bold; text-align:center; color:royalblue;">HMR 2.0</div>""")
|
117 |
+
|
118 |
+
with gr.Row():
|
119 |
+
input_image = gr.Image(label="Input image", type="pil", width=300, height=300, fixed_size=True)
|
120 |
+
output_model = gr.Model3D(label="Reconstructions", width=300, height=300, fixed_size=True, clear_color=[0.0, 0.0, 0.0, 0.0])
|
121 |
+
|
122 |
+
gr.HTML("""<br/>""")
|
123 |
+
|
124 |
+
with gr.Row():
|
125 |
+
threshold = gr.Slider(0, 1.0, value=0.8, label='Detection Threshold')
|
126 |
+
send_btn = gr.Button("Infer")
|
127 |
+
send_btn.click(fn=infer, inputs=[input_image, threshold], outputs=[output_model])
|
128 |
+
|
129 |
+
# gr.Examples(['samples/img1.jpg', 'samples/img2.png', 'samples/img3.jpg', 'samples/img4.jpg'], inputs=input_image)
|
130 |
+
|
131 |
+
gr.HTML("""</ul>""")
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
#demo.queue()
|
136 |
+
demo.launch(debug=True)
|
137 |
+
|
138 |
+
|
139 |
+
|
140 |
+
|
141 |
+
### EOF ###
|
clean_ckpt.ipynb
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"import torch\n",
|
10 |
+
"ckpt_path = 'logs/train/multiruns/hmr2/0/checkpoints/epoch=35-step=1000000.ckpt'"
|
11 |
+
]
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"cell_type": "code",
|
15 |
+
"execution_count": null,
|
16 |
+
"metadata": {},
|
17 |
+
"outputs": [],
|
18 |
+
"source": [
|
19 |
+
"# Load ckpt\n",
|
20 |
+
"ckpt = torch.load(ckpt_path, map_location='cpu')"
|
21 |
+
]
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"cell_type": "code",
|
25 |
+
"execution_count": null,
|
26 |
+
"metadata": {},
|
27 |
+
"outputs": [],
|
28 |
+
"source": [
|
29 |
+
"ckpt.keys()\n"
|
30 |
+
]
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"cell_type": "code",
|
34 |
+
"execution_count": null,
|
35 |
+
"metadata": {},
|
36 |
+
"outputs": [],
|
37 |
+
"source": [
|
38 |
+
"ckpt['loops']"
|
39 |
+
]
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"cell_type": "code",
|
43 |
+
"execution_count": null,
|
44 |
+
"metadata": {},
|
45 |
+
"outputs": [],
|
46 |
+
"source": [
|
47 |
+
"# Delete optimizer_states\n",
|
48 |
+
"del ckpt['optimizer_states']\n",
|
49 |
+
"del ckpt['callbacks']\n",
|
50 |
+
"del ckpt['loops']"
|
51 |
+
]
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"cell_type": "code",
|
55 |
+
"execution_count": null,
|
56 |
+
"metadata": {},
|
57 |
+
"outputs": [],
|
58 |
+
"source": [
|
59 |
+
"# Save new ckpt\n",
|
60 |
+
"torch.save(ckpt, ckpt_path)"
|
61 |
+
]
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"cell_type": "code",
|
65 |
+
"execution_count": null,
|
66 |
+
"metadata": {},
|
67 |
+
"outputs": [],
|
68 |
+
"source": []
|
69 |
+
}
|
70 |
+
],
|
71 |
+
"metadata": {
|
72 |
+
"kernelspec": {
|
73 |
+
"display_name": "4D-humans",
|
74 |
+
"language": "python",
|
75 |
+
"name": "python3"
|
76 |
+
},
|
77 |
+
"language_info": {
|
78 |
+
"codemirror_mode": {
|
79 |
+
"name": "ipython",
|
80 |
+
"version": 3
|
81 |
+
},
|
82 |
+
"file_extension": ".py",
|
83 |
+
"mimetype": "text/x-python",
|
84 |
+
"name": "python",
|
85 |
+
"nbconvert_exporter": "python",
|
86 |
+
"pygments_lexer": "ipython3",
|
87 |
+
"version": "3.10.6"
|
88 |
+
},
|
89 |
+
"orig_nbformat": 4
|
90 |
+
},
|
91 |
+
"nbformat": 4,
|
92 |
+
"nbformat_minor": 2
|
93 |
+
}
|
demo.py
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
import torch
|
3 |
+
import argparse
|
4 |
+
import os
|
5 |
+
import cv2
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
from hmr2.configs import get_config
|
9 |
+
from hmr2.models import HMR2
|
10 |
+
from hmr2.utils import recursive_to
|
11 |
+
from hmr2.datasets.vitdet_dataset import ViTDetDataset, DEFAULT_MEAN, DEFAULT_STD
|
12 |
+
from hmr2.utils.renderer import Renderer, cam_crop_to_full
|
13 |
+
|
14 |
+
LIGHT_BLUE=(0.65098039, 0.74117647, 0.85882353)
|
15 |
+
# DEFAULT_CHECKPOINT='logs/train/multiruns/20b1_mix11_a1/0/checkpoints/epoch=30-step=1000000.ckpt'
|
16 |
+
DEFAULT_CHECKPOINT='logs/train/multiruns/hmr2/0/checkpoints/epoch=35-step=1000000.ckpt'
|
17 |
+
parser = argparse.ArgumentParser(description='HMR2 demo code')
|
18 |
+
parser.add_argument('--checkpoint', type=str, default=DEFAULT_CHECKPOINT, help='Path to pretrained model checkpoint')
|
19 |
+
parser.add_argument('--img_folder', type=str, default='example_data/images', help='Folder with input images')
|
20 |
+
parser.add_argument('--out_folder', type=str, default='demo_out', help='Output folder to save rendered results')
|
21 |
+
parser.add_argument('--side_view', dest='side_view', action='store_true', default=False, help='If set, render side view also')
|
22 |
+
parser.add_argument('--batch_size', type=int, default=1, help='Batch size for inference/fitting')
|
23 |
+
|
24 |
+
args = parser.parse_args()
|
25 |
+
|
26 |
+
# Setup HMR2.0 model
|
27 |
+
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
28 |
+
model_cfg = str(Path(args.checkpoint).parent.parent / 'model_config.yaml')
|
29 |
+
model_cfg = get_config(model_cfg)
|
30 |
+
model = HMR2.load_from_checkpoint(args.checkpoint, strict=False, cfg=model_cfg).to(device)
|
31 |
+
model.eval()
|
32 |
+
|
33 |
+
# Load detector
|
34 |
+
from detectron2.config import LazyConfig
|
35 |
+
from hmr2.utils.utils_detectron2 import DefaultPredictor_Lazy
|
36 |
+
detectron2_cfg = LazyConfig.load(f"vendor/detectron2/projects/ViTDet/configs/COCO/cascade_mask_rcnn_vitdet_h_75ep.py")
|
37 |
+
detectron2_cfg.train.init_checkpoint = "https://dl.fbaipublicfiles.com/detectron2/ViTDet/COCO/cascade_mask_rcnn_vitdet_h/f328730692/model_final_f05665.pkl"
|
38 |
+
for i in range(3):
|
39 |
+
detectron2_cfg.model.roi_heads.box_predictors[i].test_score_thresh = 0.25
|
40 |
+
detector = DefaultPredictor_Lazy(detectron2_cfg)
|
41 |
+
|
42 |
+
# Setup the renderer
|
43 |
+
renderer = Renderer(model_cfg, faces=model.smpl.faces)
|
44 |
+
|
45 |
+
# Make output directory if it does not exist
|
46 |
+
os.makedirs(args.out_folder, exist_ok=True)
|
47 |
+
|
48 |
+
# Iterate over all images in folder
|
49 |
+
for img_path in Path(args.img_folder).glob('*.png'):
|
50 |
+
img_cv2 = cv2.imread(str(img_path), cv2.IMREAD_COLOR)
|
51 |
+
|
52 |
+
# Detect humans in image
|
53 |
+
det_out = detector(img_cv2)
|
54 |
+
|
55 |
+
det_instances = det_out['instances']
|
56 |
+
valid_idx = (det_instances.pred_classes==0) & (det_instances.scores > 0.5)
|
57 |
+
boxes=det_instances.pred_boxes.tensor[valid_idx].cpu().numpy()
|
58 |
+
|
59 |
+
# Run HMR2.0 on all detected humans
|
60 |
+
dataset = ViTDetDataset(model_cfg, img_cv2.copy(), boxes)
|
61 |
+
dataloader = torch.utils.data.DataLoader(dataset, batch_size=8, shuffle=False, num_workers=0)
|
62 |
+
|
63 |
+
|
64 |
+
all_verts = []
|
65 |
+
all_cam_t = []
|
66 |
+
|
67 |
+
for batch in dataloader:
|
68 |
+
batch = recursive_to(batch, device)
|
69 |
+
with torch.no_grad():
|
70 |
+
out = model(batch)
|
71 |
+
|
72 |
+
pred_cam = out['pred_cam']
|
73 |
+
box_center = batch["box_center"].float()
|
74 |
+
box_size = batch["box_size"].float()
|
75 |
+
img_size = batch["img_size"].float()
|
76 |
+
render_size = img_size
|
77 |
+
pred_cam_t = cam_crop_to_full(pred_cam, box_center, box_size, render_size).detach().cpu().numpy()
|
78 |
+
|
79 |
+
# Render the result
|
80 |
+
batch_size = batch['img'].shape[0]
|
81 |
+
for n in range(batch_size):
|
82 |
+
# Get filename from path img_path
|
83 |
+
img_fn, _ = os.path.splitext(os.path.basename(img_path))
|
84 |
+
person_id = int(batch['personid'][n])
|
85 |
+
white_img = (torch.ones_like(batch['img'][n]).cpu() - DEFAULT_MEAN[:,None,None]/255) / (DEFAULT_STD[:,None,None]/255)
|
86 |
+
input_patch = batch['img'][n].cpu() * (DEFAULT_STD[:,None,None]/255) + (DEFAULT_MEAN[:,None,None]/255)
|
87 |
+
input_patch = input_patch.permute(1,2,0).numpy()
|
88 |
+
|
89 |
+
regression_img = renderer(out['pred_vertices'][n].detach().cpu().numpy(),
|
90 |
+
out['pred_cam_t'][n].detach().cpu().numpy(),
|
91 |
+
batch['img'][n],
|
92 |
+
mesh_base_color=LIGHT_BLUE,
|
93 |
+
scene_bg_color=(1, 1, 1),
|
94 |
+
)
|
95 |
+
|
96 |
+
if args.side_view:
|
97 |
+
side_img = renderer(out['pred_vertices'][n].detach().cpu().numpy(),
|
98 |
+
out['pred_cam_t'][n].detach().cpu().numpy(),
|
99 |
+
white_img,
|
100 |
+
mesh_base_color=LIGHT_BLUE,
|
101 |
+
scene_bg_color=(1, 1, 1),
|
102 |
+
side_view=True)
|
103 |
+
final_img = np.concatenate([input_patch, regression_img, side_img], axis=1)
|
104 |
+
else:
|
105 |
+
final_img = np.concatenate([input_patch, regression_img], axis=1)
|
106 |
+
|
107 |
+
|
108 |
+
verts = out['pred_vertices'][n].detach().cpu().numpy()
|
109 |
+
cam_t = pred_cam_t[n]
|
110 |
+
|
111 |
+
all_verts.append(verts)
|
112 |
+
all_cam_t.append(cam_t)
|
113 |
+
|
114 |
+
misc_args = dict(
|
115 |
+
mesh_base_color=LIGHT_BLUE,
|
116 |
+
scene_bg_color=(1, 1, 1),
|
117 |
+
)
|
118 |
+
|
119 |
+
# Render front view
|
120 |
+
if len(all_verts) > 0:
|
121 |
+
cam_view = renderer.render_rgba_multiple(all_verts, cam_t=all_cam_t, render_res=render_size[n], **misc_args)
|
122 |
+
|
123 |
+
# Overlay image
|
124 |
+
input_img = img_cv2.astype(np.float32)[:,:,::-1]/255.0
|
125 |
+
input_img = np.concatenate([input_img, np.ones_like(input_img[:,:,:1])], axis=2) # Add alpha channel
|
126 |
+
input_img_overlay = input_img[:,:,:3] * (1-cam_view[:,:,3:]) + cam_view[:,:,:3] * cam_view[:,:,3:]
|
127 |
+
|
128 |
+
|
129 |
+
# cv2.imwrite(os.path.join(args.out_folder, f'{img_fn}_{person_id}.jpg'), 255*final_img[:, :, ::-1])
|
130 |
+
cv2.imwrite(os.path.join(args.out_folder, f'rend_{img_fn}.jpg'), 255*input_img_overlay[:, :, ::-1])
|
environment.yml
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: 4D-humans
|
2 |
+
channels:
|
3 |
+
- pytorch
|
4 |
+
- nvidia
|
5 |
+
- conda-forge
|
6 |
+
dependencies:
|
7 |
+
- python=3.10
|
8 |
+
- pytorch-cuda=11.8
|
9 |
+
- torchvision
|
10 |
+
- pip
|
11 |
+
- pip:
|
12 |
+
- pytorch-lightning
|
13 |
+
- smplx==0.1.28
|
14 |
+
- pyrender
|
15 |
+
- opencv-python
|
16 |
+
- yacs
|
17 |
+
- scikit-image
|
18 |
+
- einops
|
19 |
+
- timm
|
20 |
+
- -e ./vendor/detectron2/
|
fetch_data.sh
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
wget https://people.eecs.berkeley.edu/~shubham-goel/projects/4DHumans/hmr2_data.tar.gz
|
2 |
+
tar -xvzf hmr2_data.tar.gz
|
hmr2/__init__.py
ADDED
File without changes
|
hmr2/configs/__init__.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import Dict
|
3 |
+
from yacs.config import CfgNode as CN
|
4 |
+
|
5 |
+
|
6 |
+
def to_lower(x: Dict) -> Dict:
|
7 |
+
"""
|
8 |
+
Convert all dictionary keys to lowercase
|
9 |
+
Args:
|
10 |
+
x (dict): Input dictionary
|
11 |
+
Returns:
|
12 |
+
dict: Output dictionary with all keys converted to lowercase
|
13 |
+
"""
|
14 |
+
return {k.lower(): v for k, v in x.items()}
|
15 |
+
|
16 |
+
_C = CN(new_allowed=True)
|
17 |
+
|
18 |
+
_C.GENERAL = CN(new_allowed=True)
|
19 |
+
_C.GENERAL.RESUME = True
|
20 |
+
_C.GENERAL.TIME_TO_RUN = 3300
|
21 |
+
_C.GENERAL.VAL_STEPS = 100
|
22 |
+
_C.GENERAL.LOG_STEPS = 100
|
23 |
+
_C.GENERAL.CHECKPOINT_STEPS = 20000
|
24 |
+
_C.GENERAL.CHECKPOINT_DIR = "checkpoints"
|
25 |
+
_C.GENERAL.SUMMARY_DIR = "tensorboard"
|
26 |
+
_C.GENERAL.NUM_GPUS = 1
|
27 |
+
_C.GENERAL.NUM_WORKERS = 4
|
28 |
+
_C.GENERAL.MIXED_PRECISION = True
|
29 |
+
_C.GENERAL.ALLOW_CUDA = True
|
30 |
+
_C.GENERAL.PIN_MEMORY = False
|
31 |
+
_C.GENERAL.DISTRIBUTED = False
|
32 |
+
_C.GENERAL.LOCAL_RANK = 0
|
33 |
+
_C.GENERAL.USE_SYNCBN = False
|
34 |
+
_C.GENERAL.WORLD_SIZE = 1
|
35 |
+
|
36 |
+
_C.TRAIN = CN(new_allowed=True)
|
37 |
+
_C.TRAIN.NUM_EPOCHS = 100
|
38 |
+
_C.TRAIN.BATCH_SIZE = 32
|
39 |
+
_C.TRAIN.SHUFFLE = True
|
40 |
+
_C.TRAIN.WARMUP = False
|
41 |
+
_C.TRAIN.NORMALIZE_PER_IMAGE = False
|
42 |
+
_C.TRAIN.CLIP_GRAD = False
|
43 |
+
_C.TRAIN.CLIP_GRAD_VALUE = 1.0
|
44 |
+
_C.LOSS_WEIGHTS = CN(new_allowed=True)
|
45 |
+
|
46 |
+
_C.DATASETS = CN(new_allowed=True)
|
47 |
+
|
48 |
+
_C.MODEL = CN(new_allowed=True)
|
49 |
+
_C.MODEL.IMAGE_SIZE = 224
|
50 |
+
|
51 |
+
_C.EXTRA = CN(new_allowed=True)
|
52 |
+
_C.EXTRA.FOCAL_LENGTH = 5000
|
53 |
+
|
54 |
+
_C.DATASETS.CONFIG = CN(new_allowed=True)
|
55 |
+
_C.DATASETS.CONFIG.SCALE_FACTOR = 0.3
|
56 |
+
_C.DATASETS.CONFIG.ROT_FACTOR = 30
|
57 |
+
_C.DATASETS.CONFIG.TRANS_FACTOR = 0.02
|
58 |
+
_C.DATASETS.CONFIG.COLOR_SCALE = 0.2
|
59 |
+
_C.DATASETS.CONFIG.ROT_AUG_RATE = 0.6
|
60 |
+
_C.DATASETS.CONFIG.TRANS_AUG_RATE = 0.5
|
61 |
+
_C.DATASETS.CONFIG.DO_FLIP = True
|
62 |
+
_C.DATASETS.CONFIG.FLIP_AUG_RATE = 0.5
|
63 |
+
_C.DATASETS.CONFIG.EXTREME_CROP_AUG_RATE = 0.10
|
64 |
+
|
65 |
+
def default_config() -> CN:
|
66 |
+
"""
|
67 |
+
Get a yacs CfgNode object with the default config values.
|
68 |
+
"""
|
69 |
+
# Return a clone so that the defaults will not be altered
|
70 |
+
# This is for the "local variable" use pattern
|
71 |
+
return _C.clone()
|
72 |
+
|
73 |
+
def get_config(config_file: str, merge: bool = True) -> CN:
|
74 |
+
"""
|
75 |
+
Read a config file and optionally merge it with the default config file.
|
76 |
+
Args:
|
77 |
+
config_file (str): Path to config file.
|
78 |
+
merge (bool): Whether to merge with the default config or not.
|
79 |
+
Returns:
|
80 |
+
CfgNode: Config as a yacs CfgNode object.
|
81 |
+
"""
|
82 |
+
if merge:
|
83 |
+
cfg = default_config()
|
84 |
+
else:
|
85 |
+
cfg = CN(new_allowed=True)
|
86 |
+
cfg.merge_from_file(config_file)
|
87 |
+
cfg.freeze()
|
88 |
+
return cfg
|
hmr2/datasets/__init__.py
ADDED
File without changes
|
hmr2/datasets/utils.py
ADDED
@@ -0,0 +1,999 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Parts of the code are taken or adapted from
|
3 |
+
https://github.com/mkocabas/EpipolarPose/blob/master/lib/utils/img_utils.py
|
4 |
+
"""
|
5 |
+
import torch
|
6 |
+
import numpy as np
|
7 |
+
from skimage.transform import rotate, resize
|
8 |
+
from skimage.filters import gaussian
|
9 |
+
import random
|
10 |
+
import cv2
|
11 |
+
from typing import List, Dict, Tuple
|
12 |
+
from yacs.config import CfgNode
|
13 |
+
|
14 |
+
def expand_to_aspect_ratio(input_shape, target_aspect_ratio=None):
|
15 |
+
"""Increase the size of the bounding box to match the target shape."""
|
16 |
+
if target_aspect_ratio is None:
|
17 |
+
return input_shape
|
18 |
+
|
19 |
+
try:
|
20 |
+
w , h = input_shape
|
21 |
+
except (ValueError, TypeError):
|
22 |
+
return input_shape
|
23 |
+
|
24 |
+
w_t, h_t = target_aspect_ratio
|
25 |
+
if h / w < h_t / w_t:
|
26 |
+
h_new = max(w * h_t / w_t, h)
|
27 |
+
w_new = w
|
28 |
+
else:
|
29 |
+
h_new = h
|
30 |
+
w_new = max(h * w_t / h_t, w)
|
31 |
+
if h_new < h or w_new < w:
|
32 |
+
breakpoint()
|
33 |
+
return np.array([w_new, h_new])
|
34 |
+
|
35 |
+
def do_augmentation(aug_config: CfgNode) -> Tuple:
|
36 |
+
"""
|
37 |
+
Compute random augmentation parameters.
|
38 |
+
Args:
|
39 |
+
aug_config (CfgNode): Config containing augmentation parameters.
|
40 |
+
Returns:
|
41 |
+
scale (float): Box rescaling factor.
|
42 |
+
rot (float): Random image rotation.
|
43 |
+
do_flip (bool): Whether to flip image or not.
|
44 |
+
do_extreme_crop (bool): Whether to apply extreme cropping (as proposed in EFT).
|
45 |
+
color_scale (List): Color rescaling factor
|
46 |
+
tx (float): Random translation along the x axis.
|
47 |
+
ty (float): Random translation along the y axis.
|
48 |
+
"""
|
49 |
+
|
50 |
+
tx = np.clip(np.random.randn(), -1.0, 1.0) * aug_config.TRANS_FACTOR
|
51 |
+
ty = np.clip(np.random.randn(), -1.0, 1.0) * aug_config.TRANS_FACTOR
|
52 |
+
scale = np.clip(np.random.randn(), -1.0, 1.0) * aug_config.SCALE_FACTOR + 1.0
|
53 |
+
rot = np.clip(np.random.randn(), -2.0,
|
54 |
+
2.0) * aug_config.ROT_FACTOR if random.random() <= aug_config.ROT_AUG_RATE else 0
|
55 |
+
do_flip = aug_config.DO_FLIP and random.random() <= aug_config.FLIP_AUG_RATE
|
56 |
+
do_extreme_crop = random.random() <= aug_config.EXTREME_CROP_AUG_RATE
|
57 |
+
extreme_crop_lvl = aug_config.get('EXTREME_CROP_AUG_LEVEL', 0)
|
58 |
+
# extreme_crop_lvl = 0
|
59 |
+
c_up = 1.0 + aug_config.COLOR_SCALE
|
60 |
+
c_low = 1.0 - aug_config.COLOR_SCALE
|
61 |
+
color_scale = [random.uniform(c_low, c_up), random.uniform(c_low, c_up), random.uniform(c_low, c_up)]
|
62 |
+
return scale, rot, do_flip, do_extreme_crop, extreme_crop_lvl, color_scale, tx, ty
|
63 |
+
|
64 |
+
def rotate_2d(pt_2d: np.array, rot_rad: float) -> np.array:
|
65 |
+
"""
|
66 |
+
Rotate a 2D point on the x-y plane.
|
67 |
+
Args:
|
68 |
+
pt_2d (np.array): Input 2D point with shape (2,).
|
69 |
+
rot_rad (float): Rotation angle
|
70 |
+
Returns:
|
71 |
+
np.array: Rotated 2D point.
|
72 |
+
"""
|
73 |
+
x = pt_2d[0]
|
74 |
+
y = pt_2d[1]
|
75 |
+
sn, cs = np.sin(rot_rad), np.cos(rot_rad)
|
76 |
+
xx = x * cs - y * sn
|
77 |
+
yy = x * sn + y * cs
|
78 |
+
return np.array([xx, yy], dtype=np.float32)
|
79 |
+
|
80 |
+
|
81 |
+
def gen_trans_from_patch_cv(c_x: float, c_y: float,
|
82 |
+
src_width: float, src_height: float,
|
83 |
+
dst_width: float, dst_height: float,
|
84 |
+
scale: float, rot: float) -> np.array:
|
85 |
+
"""
|
86 |
+
Create transformation matrix for the bounding box crop.
|
87 |
+
Args:
|
88 |
+
c_x (float): Bounding box center x coordinate in the original image.
|
89 |
+
c_y (float): Bounding box center y coordinate in the original image.
|
90 |
+
src_width (float): Bounding box width.
|
91 |
+
src_height (float): Bounding box height.
|
92 |
+
dst_width (float): Output box width.
|
93 |
+
dst_height (float): Output box height.
|
94 |
+
scale (float): Rescaling factor for the bounding box (augmentation).
|
95 |
+
rot (float): Random rotation applied to the box.
|
96 |
+
Returns:
|
97 |
+
trans (np.array): Target geometric transformation.
|
98 |
+
"""
|
99 |
+
# augment size with scale
|
100 |
+
src_w = src_width * scale
|
101 |
+
src_h = src_height * scale
|
102 |
+
src_center = np.zeros(2)
|
103 |
+
src_center[0] = c_x
|
104 |
+
src_center[1] = c_y
|
105 |
+
# augment rotation
|
106 |
+
rot_rad = np.pi * rot / 180
|
107 |
+
src_downdir = rotate_2d(np.array([0, src_h * 0.5], dtype=np.float32), rot_rad)
|
108 |
+
src_rightdir = rotate_2d(np.array([src_w * 0.5, 0], dtype=np.float32), rot_rad)
|
109 |
+
|
110 |
+
dst_w = dst_width
|
111 |
+
dst_h = dst_height
|
112 |
+
dst_center = np.array([dst_w * 0.5, dst_h * 0.5], dtype=np.float32)
|
113 |
+
dst_downdir = np.array([0, dst_h * 0.5], dtype=np.float32)
|
114 |
+
dst_rightdir = np.array([dst_w * 0.5, 0], dtype=np.float32)
|
115 |
+
|
116 |
+
src = np.zeros((3, 2), dtype=np.float32)
|
117 |
+
src[0, :] = src_center
|
118 |
+
src[1, :] = src_center + src_downdir
|
119 |
+
src[2, :] = src_center + src_rightdir
|
120 |
+
|
121 |
+
dst = np.zeros((3, 2), dtype=np.float32)
|
122 |
+
dst[0, :] = dst_center
|
123 |
+
dst[1, :] = dst_center + dst_downdir
|
124 |
+
dst[2, :] = dst_center + dst_rightdir
|
125 |
+
|
126 |
+
trans = cv2.getAffineTransform(np.float32(src), np.float32(dst))
|
127 |
+
|
128 |
+
return trans
|
129 |
+
|
130 |
+
|
131 |
+
def trans_point2d(pt_2d: np.array, trans: np.array):
|
132 |
+
"""
|
133 |
+
Transform a 2D point using translation matrix trans.
|
134 |
+
Args:
|
135 |
+
pt_2d (np.array): Input 2D point with shape (2,).
|
136 |
+
trans (np.array): Transformation matrix.
|
137 |
+
Returns:
|
138 |
+
np.array: Transformed 2D point.
|
139 |
+
"""
|
140 |
+
src_pt = np.array([pt_2d[0], pt_2d[1], 1.]).T
|
141 |
+
dst_pt = np.dot(trans, src_pt)
|
142 |
+
return dst_pt[0:2]
|
143 |
+
|
144 |
+
def get_transform(center, scale, res, rot=0):
|
145 |
+
"""Generate transformation matrix."""
|
146 |
+
"""Taken from PARE: https://github.com/mkocabas/PARE/blob/6e0caca86c6ab49ff80014b661350958e5b72fd8/pare/utils/image_utils.py"""
|
147 |
+
h = 200 * scale
|
148 |
+
t = np.zeros((3, 3))
|
149 |
+
t[0, 0] = float(res[1]) / h
|
150 |
+
t[1, 1] = float(res[0]) / h
|
151 |
+
t[0, 2] = res[1] * (-float(center[0]) / h + .5)
|
152 |
+
t[1, 2] = res[0] * (-float(center[1]) / h + .5)
|
153 |
+
t[2, 2] = 1
|
154 |
+
if not rot == 0:
|
155 |
+
rot = -rot # To match direction of rotation from cropping
|
156 |
+
rot_mat = np.zeros((3, 3))
|
157 |
+
rot_rad = rot * np.pi / 180
|
158 |
+
sn, cs = np.sin(rot_rad), np.cos(rot_rad)
|
159 |
+
rot_mat[0, :2] = [cs, -sn]
|
160 |
+
rot_mat[1, :2] = [sn, cs]
|
161 |
+
rot_mat[2, 2] = 1
|
162 |
+
# Need to rotate around center
|
163 |
+
t_mat = np.eye(3)
|
164 |
+
t_mat[0, 2] = -res[1] / 2
|
165 |
+
t_mat[1, 2] = -res[0] / 2
|
166 |
+
t_inv = t_mat.copy()
|
167 |
+
t_inv[:2, 2] *= -1
|
168 |
+
t = np.dot(t_inv, np.dot(rot_mat, np.dot(t_mat, t)))
|
169 |
+
return t
|
170 |
+
|
171 |
+
|
172 |
+
def transform(pt, center, scale, res, invert=0, rot=0, as_int=True):
|
173 |
+
"""Transform pixel location to different reference."""
|
174 |
+
"""Taken from PARE: https://github.com/mkocabas/PARE/blob/6e0caca86c6ab49ff80014b661350958e5b72fd8/pare/utils/image_utils.py"""
|
175 |
+
t = get_transform(center, scale, res, rot=rot)
|
176 |
+
if invert:
|
177 |
+
t = np.linalg.inv(t)
|
178 |
+
new_pt = np.array([pt[0] - 1, pt[1] - 1, 1.]).T
|
179 |
+
new_pt = np.dot(t, new_pt)
|
180 |
+
if as_int:
|
181 |
+
new_pt = new_pt.astype(int)
|
182 |
+
return new_pt[:2] + 1
|
183 |
+
|
184 |
+
def crop_img(img, ul, br, border_mode=cv2.BORDER_CONSTANT, border_value=0):
|
185 |
+
c_x = (ul[0] + br[0])/2
|
186 |
+
c_y = (ul[1] + br[1])/2
|
187 |
+
bb_width = patch_width = br[0] - ul[0]
|
188 |
+
bb_height = patch_height = br[1] - ul[1]
|
189 |
+
trans = gen_trans_from_patch_cv(c_x, c_y, bb_width, bb_height, patch_width, patch_height, 1.0, 0)
|
190 |
+
img_patch = cv2.warpAffine(img, trans, (int(patch_width), int(patch_height)),
|
191 |
+
flags=cv2.INTER_LINEAR,
|
192 |
+
borderMode=border_mode,
|
193 |
+
borderValue=border_value
|
194 |
+
)
|
195 |
+
|
196 |
+
# Force borderValue=cv2.BORDER_CONSTANT for alpha channel
|
197 |
+
if (img.shape[2] == 4) and (border_mode != cv2.BORDER_CONSTANT):
|
198 |
+
img_patch[:,:,3] = cv2.warpAffine(img[:,:,3], trans, (int(patch_width), int(patch_height)),
|
199 |
+
flags=cv2.INTER_LINEAR,
|
200 |
+
borderMode=cv2.BORDER_CONSTANT,
|
201 |
+
)
|
202 |
+
|
203 |
+
return img_patch
|
204 |
+
|
205 |
+
def generate_image_patch_skimage(img: np.array, c_x: float, c_y: float,
|
206 |
+
bb_width: float, bb_height: float,
|
207 |
+
patch_width: float, patch_height: float,
|
208 |
+
do_flip: bool, scale: float, rot: float,
|
209 |
+
border_mode=cv2.BORDER_CONSTANT, border_value=0) -> Tuple[np.array, np.array]:
|
210 |
+
"""
|
211 |
+
Crop image according to the supplied bounding box.
|
212 |
+
Args:
|
213 |
+
img (np.array): Input image of shape (H, W, 3)
|
214 |
+
c_x (float): Bounding box center x coordinate in the original image.
|
215 |
+
c_y (float): Bounding box center y coordinate in the original image.
|
216 |
+
bb_width (float): Bounding box width.
|
217 |
+
bb_height (float): Bounding box height.
|
218 |
+
patch_width (float): Output box width.
|
219 |
+
patch_height (float): Output box height.
|
220 |
+
do_flip (bool): Whether to flip image or not.
|
221 |
+
scale (float): Rescaling factor for the bounding box (augmentation).
|
222 |
+
rot (float): Random rotation applied to the box.
|
223 |
+
Returns:
|
224 |
+
img_patch (np.array): Cropped image patch of shape (patch_height, patch_height, 3)
|
225 |
+
trans (np.array): Transformation matrix.
|
226 |
+
"""
|
227 |
+
|
228 |
+
img_height, img_width, img_channels = img.shape
|
229 |
+
if do_flip:
|
230 |
+
img = img[:, ::-1, :]
|
231 |
+
c_x = img_width - c_x - 1
|
232 |
+
|
233 |
+
trans = gen_trans_from_patch_cv(c_x, c_y, bb_width, bb_height, patch_width, patch_height, scale, rot)
|
234 |
+
|
235 |
+
#img_patch = cv2.warpAffine(img, trans, (int(patch_width), int(patch_height)), flags=cv2.INTER_LINEAR)
|
236 |
+
|
237 |
+
# skimage
|
238 |
+
center = np.zeros(2)
|
239 |
+
center[0] = c_x
|
240 |
+
center[1] = c_y
|
241 |
+
res = np.zeros(2)
|
242 |
+
res[0] = patch_width
|
243 |
+
res[1] = patch_height
|
244 |
+
# assumes bb_width = bb_height
|
245 |
+
# assumes patch_width = patch_height
|
246 |
+
assert bb_width == bb_height, f'{bb_width=} != {bb_height=}'
|
247 |
+
assert patch_width == patch_height, f'{patch_width=} != {patch_height=}'
|
248 |
+
scale1 = scale*bb_width/200.
|
249 |
+
|
250 |
+
# Upper left point
|
251 |
+
ul = np.array(transform([1, 1], center, scale1, res, invert=1, as_int=False)) - 1
|
252 |
+
# Bottom right point
|
253 |
+
br = np.array(transform([res[0] + 1,
|
254 |
+
res[1] + 1], center, scale1, res, invert=1, as_int=False)) - 1
|
255 |
+
|
256 |
+
# Padding so that when rotated proper amount of context is included
|
257 |
+
try:
|
258 |
+
pad = int(np.linalg.norm(br - ul) / 2 - float(br[1] - ul[1]) / 2) + 1
|
259 |
+
except:
|
260 |
+
breakpoint()
|
261 |
+
if not rot == 0:
|
262 |
+
ul -= pad
|
263 |
+
br += pad
|
264 |
+
|
265 |
+
|
266 |
+
if False:
|
267 |
+
# Old way of cropping image
|
268 |
+
ul_int = ul.astype(int)
|
269 |
+
br_int = br.astype(int)
|
270 |
+
new_shape = [br_int[1] - ul_int[1], br_int[0] - ul_int[0]]
|
271 |
+
if len(img.shape) > 2:
|
272 |
+
new_shape += [img.shape[2]]
|
273 |
+
new_img = np.zeros(new_shape)
|
274 |
+
|
275 |
+
# Range to fill new array
|
276 |
+
new_x = max(0, -ul_int[0]), min(br_int[0], len(img[0])) - ul_int[0]
|
277 |
+
new_y = max(0, -ul_int[1]), min(br_int[1], len(img)) - ul_int[1]
|
278 |
+
# Range to sample from original image
|
279 |
+
old_x = max(0, ul_int[0]), min(len(img[0]), br_int[0])
|
280 |
+
old_y = max(0, ul_int[1]), min(len(img), br_int[1])
|
281 |
+
new_img[new_y[0]:new_y[1], new_x[0]:new_x[1]] = img[old_y[0]:old_y[1],
|
282 |
+
old_x[0]:old_x[1]]
|
283 |
+
|
284 |
+
# New way of cropping image
|
285 |
+
new_img = crop_img(img, ul, br, border_mode=border_mode, border_value=border_value).astype(np.float32)
|
286 |
+
|
287 |
+
# print(f'{new_img.shape=}')
|
288 |
+
# print(f'{new_img1.shape=}')
|
289 |
+
# print(f'{np.allclose(new_img, new_img1)=}')
|
290 |
+
# print(f'{img.dtype=}')
|
291 |
+
|
292 |
+
|
293 |
+
if not rot == 0:
|
294 |
+
# Remove padding
|
295 |
+
|
296 |
+
new_img = rotate(new_img, rot) # scipy.misc.imrotate(new_img, rot)
|
297 |
+
new_img = new_img[pad:-pad, pad:-pad]
|
298 |
+
|
299 |
+
if new_img.shape[0] < 1 or new_img.shape[1] < 1:
|
300 |
+
print(f'{img.shape=}')
|
301 |
+
print(f'{new_img.shape=}')
|
302 |
+
print(f'{ul=}')
|
303 |
+
print(f'{br=}')
|
304 |
+
print(f'{pad=}')
|
305 |
+
print(f'{rot=}')
|
306 |
+
|
307 |
+
breakpoint()
|
308 |
+
|
309 |
+
# resize image
|
310 |
+
new_img = resize(new_img, res) # scipy.misc.imresize(new_img, res)
|
311 |
+
|
312 |
+
new_img = np.clip(new_img, 0, 255).astype(np.uint8)
|
313 |
+
|
314 |
+
return new_img, trans
|
315 |
+
|
316 |
+
|
317 |
+
def generate_image_patch_cv2(img: np.array, c_x: float, c_y: float,
|
318 |
+
bb_width: float, bb_height: float,
|
319 |
+
patch_width: float, patch_height: float,
|
320 |
+
do_flip: bool, scale: float, rot: float,
|
321 |
+
border_mode=cv2.BORDER_CONSTANT, border_value=0) -> Tuple[np.array, np.array]:
|
322 |
+
"""
|
323 |
+
Crop the input image and return the crop and the corresponding transformation matrix.
|
324 |
+
Args:
|
325 |
+
img (np.array): Input image of shape (H, W, 3)
|
326 |
+
c_x (float): Bounding box center x coordinate in the original image.
|
327 |
+
c_y (float): Bounding box center y coordinate in the original image.
|
328 |
+
bb_width (float): Bounding box width.
|
329 |
+
bb_height (float): Bounding box height.
|
330 |
+
patch_width (float): Output box width.
|
331 |
+
patch_height (float): Output box height.
|
332 |
+
do_flip (bool): Whether to flip image or not.
|
333 |
+
scale (float): Rescaling factor for the bounding box (augmentation).
|
334 |
+
rot (float): Random rotation applied to the box.
|
335 |
+
Returns:
|
336 |
+
img_patch (np.array): Cropped image patch of shape (patch_height, patch_height, 3)
|
337 |
+
trans (np.array): Transformation matrix.
|
338 |
+
"""
|
339 |
+
|
340 |
+
img_height, img_width, img_channels = img.shape
|
341 |
+
if do_flip:
|
342 |
+
img = img[:, ::-1, :]
|
343 |
+
c_x = img_width - c_x - 1
|
344 |
+
|
345 |
+
|
346 |
+
trans = gen_trans_from_patch_cv(c_x, c_y, bb_width, bb_height, patch_width, patch_height, scale, rot)
|
347 |
+
|
348 |
+
img_patch = cv2.warpAffine(img, trans, (int(patch_width), int(patch_height)),
|
349 |
+
flags=cv2.INTER_LINEAR,
|
350 |
+
borderMode=border_mode,
|
351 |
+
borderValue=border_value,
|
352 |
+
)
|
353 |
+
# Force borderValue=cv2.BORDER_CONSTANT for alpha channel
|
354 |
+
if (img.shape[2] == 4) and (border_mode != cv2.BORDER_CONSTANT):
|
355 |
+
img_patch[:,:,3] = cv2.warpAffine(img[:,:,3], trans, (int(patch_width), int(patch_height)),
|
356 |
+
flags=cv2.INTER_LINEAR,
|
357 |
+
borderMode=cv2.BORDER_CONSTANT,
|
358 |
+
)
|
359 |
+
|
360 |
+
return img_patch, trans
|
361 |
+
|
362 |
+
|
363 |
+
def convert_cvimg_to_tensor(cvimg: np.array):
|
364 |
+
"""
|
365 |
+
Convert image from HWC to CHW format.
|
366 |
+
Args:
|
367 |
+
cvimg (np.array): Image of shape (H, W, 3) as loaded by OpenCV.
|
368 |
+
Returns:
|
369 |
+
np.array: Output image of shape (3, H, W).
|
370 |
+
"""
|
371 |
+
# from h,w,c(OpenCV) to c,h,w
|
372 |
+
img = cvimg.copy()
|
373 |
+
img = np.transpose(img, (2, 0, 1))
|
374 |
+
# from int to float
|
375 |
+
img = img.astype(np.float32)
|
376 |
+
return img
|
377 |
+
|
378 |
+
def fliplr_params(smpl_params: Dict, has_smpl_params: Dict) -> Tuple[Dict, Dict]:
|
379 |
+
"""
|
380 |
+
Flip SMPL parameters when flipping the image.
|
381 |
+
Args:
|
382 |
+
smpl_params (Dict): SMPL parameter annotations.
|
383 |
+
has_smpl_params (Dict): Whether SMPL annotations are valid.
|
384 |
+
Returns:
|
385 |
+
Dict, Dict: Flipped SMPL parameters and valid flags.
|
386 |
+
"""
|
387 |
+
global_orient = smpl_params['global_orient'].copy()
|
388 |
+
body_pose = smpl_params['body_pose'].copy()
|
389 |
+
betas = smpl_params['betas'].copy()
|
390 |
+
has_global_orient = has_smpl_params['global_orient'].copy()
|
391 |
+
has_body_pose = has_smpl_params['body_pose'].copy()
|
392 |
+
has_betas = has_smpl_params['betas'].copy()
|
393 |
+
|
394 |
+
body_pose_permutation = [6, 7, 8, 3, 4, 5, 9, 10, 11, 15, 16, 17, 12, 13,
|
395 |
+
14 ,18, 19, 20, 24, 25, 26, 21, 22, 23, 27, 28, 29, 33,
|
396 |
+
34, 35, 30, 31, 32, 36, 37, 38, 42, 43, 44, 39, 40, 41,
|
397 |
+
45, 46, 47, 51, 52, 53, 48, 49, 50, 57, 58, 59, 54, 55,
|
398 |
+
56, 63, 64, 65, 60, 61, 62, 69, 70, 71, 66, 67, 68]
|
399 |
+
body_pose_permutation = body_pose_permutation[:len(body_pose)]
|
400 |
+
body_pose_permutation = [i-3 for i in body_pose_permutation]
|
401 |
+
|
402 |
+
body_pose = body_pose[body_pose_permutation]
|
403 |
+
|
404 |
+
global_orient[1::3] *= -1
|
405 |
+
global_orient[2::3] *= -1
|
406 |
+
body_pose[1::3] *= -1
|
407 |
+
body_pose[2::3] *= -1
|
408 |
+
|
409 |
+
smpl_params = {'global_orient': global_orient.astype(np.float32),
|
410 |
+
'body_pose': body_pose.astype(np.float32),
|
411 |
+
'betas': betas.astype(np.float32)
|
412 |
+
}
|
413 |
+
|
414 |
+
has_smpl_params = {'global_orient': has_global_orient,
|
415 |
+
'body_pose': has_body_pose,
|
416 |
+
'betas': has_betas
|
417 |
+
}
|
418 |
+
|
419 |
+
return smpl_params, has_smpl_params
|
420 |
+
|
421 |
+
|
422 |
+
def fliplr_keypoints(joints: np.array, width: float, flip_permutation: List[int]) -> np.array:
|
423 |
+
"""
|
424 |
+
Flip 2D or 3D keypoints.
|
425 |
+
Args:
|
426 |
+
joints (np.array): Array of shape (N, 3) or (N, 4) containing 2D or 3D keypoint locations and confidence.
|
427 |
+
flip_permutation (List): Permutation to apply after flipping.
|
428 |
+
Returns:
|
429 |
+
np.array: Flipped 2D or 3D keypoints with shape (N, 3) or (N, 4) respectively.
|
430 |
+
"""
|
431 |
+
joints = joints.copy()
|
432 |
+
# Flip horizontal
|
433 |
+
joints[:, 0] = width - joints[:, 0] - 1
|
434 |
+
joints = joints[flip_permutation, :]
|
435 |
+
|
436 |
+
return joints
|
437 |
+
|
438 |
+
def keypoint_3d_processing(keypoints_3d: np.array, flip_permutation: List[int], rot: float, do_flip: float) -> np.array:
|
439 |
+
"""
|
440 |
+
Process 3D keypoints (rotation/flipping).
|
441 |
+
Args:
|
442 |
+
keypoints_3d (np.array): Input array of shape (N, 4) containing the 3D keypoints and confidence.
|
443 |
+
flip_permutation (List): Permutation to apply after flipping.
|
444 |
+
rot (float): Random rotation applied to the keypoints.
|
445 |
+
do_flip (bool): Whether to flip keypoints or not.
|
446 |
+
Returns:
|
447 |
+
np.array: Transformed 3D keypoints with shape (N, 4).
|
448 |
+
"""
|
449 |
+
if do_flip:
|
450 |
+
keypoints_3d = fliplr_keypoints(keypoints_3d, 1, flip_permutation)
|
451 |
+
# in-plane rotation
|
452 |
+
rot_mat = np.eye(3)
|
453 |
+
if not rot == 0:
|
454 |
+
rot_rad = -rot * np.pi / 180
|
455 |
+
sn,cs = np.sin(rot_rad), np.cos(rot_rad)
|
456 |
+
rot_mat[0,:2] = [cs, -sn]
|
457 |
+
rot_mat[1,:2] = [sn, cs]
|
458 |
+
keypoints_3d[:, :-1] = np.einsum('ij,kj->ki', rot_mat, keypoints_3d[:, :-1])
|
459 |
+
# flip the x coordinates
|
460 |
+
keypoints_3d = keypoints_3d.astype('float32')
|
461 |
+
return keypoints_3d
|
462 |
+
|
463 |
+
def rot_aa(aa: np.array, rot: float) -> np.array:
|
464 |
+
"""
|
465 |
+
Rotate axis angle parameters.
|
466 |
+
Args:
|
467 |
+
aa (np.array): Axis-angle vector of shape (3,).
|
468 |
+
rot (np.array): Rotation angle in degrees.
|
469 |
+
Returns:
|
470 |
+
np.array: Rotated axis-angle vector.
|
471 |
+
"""
|
472 |
+
# pose parameters
|
473 |
+
R = np.array([[np.cos(np.deg2rad(-rot)), -np.sin(np.deg2rad(-rot)), 0],
|
474 |
+
[np.sin(np.deg2rad(-rot)), np.cos(np.deg2rad(-rot)), 0],
|
475 |
+
[0, 0, 1]])
|
476 |
+
# find the rotation of the body in camera frame
|
477 |
+
per_rdg, _ = cv2.Rodrigues(aa)
|
478 |
+
# apply the global rotation to the global orientation
|
479 |
+
resrot, _ = cv2.Rodrigues(np.dot(R,per_rdg))
|
480 |
+
aa = (resrot.T)[0]
|
481 |
+
return aa.astype(np.float32)
|
482 |
+
|
483 |
+
def smpl_param_processing(smpl_params: Dict, has_smpl_params: Dict, rot: float, do_flip: bool) -> Tuple[Dict, Dict]:
|
484 |
+
"""
|
485 |
+
Apply random augmentations to the SMPL parameters.
|
486 |
+
Args:
|
487 |
+
smpl_params (Dict): SMPL parameter annotations.
|
488 |
+
has_smpl_params (Dict): Whether SMPL annotations are valid.
|
489 |
+
rot (float): Random rotation applied to the keypoints.
|
490 |
+
do_flip (bool): Whether to flip keypoints or not.
|
491 |
+
Returns:
|
492 |
+
Dict, Dict: Transformed SMPL parameters and valid flags.
|
493 |
+
"""
|
494 |
+
if do_flip:
|
495 |
+
smpl_params, has_smpl_params = fliplr_params(smpl_params, has_smpl_params)
|
496 |
+
smpl_params['global_orient'] = rot_aa(smpl_params['global_orient'], rot)
|
497 |
+
return smpl_params, has_smpl_params
|
498 |
+
|
499 |
+
|
500 |
+
|
501 |
+
def get_example(img_path: str|np.ndarray, center_x: float, center_y: float,
|
502 |
+
width: float, height: float,
|
503 |
+
keypoints_2d: np.array, keypoints_3d: np.array,
|
504 |
+
smpl_params: Dict, has_smpl_params: Dict,
|
505 |
+
flip_kp_permutation: List[int],
|
506 |
+
patch_width: int, patch_height: int,
|
507 |
+
mean: np.array, std: np.array,
|
508 |
+
do_augment: bool, augm_config: CfgNode,
|
509 |
+
is_bgr: bool = True,
|
510 |
+
use_skimage_antialias: bool = False,
|
511 |
+
border_mode: int = cv2.BORDER_CONSTANT,
|
512 |
+
return_trans: bool = False) -> Tuple:
|
513 |
+
"""
|
514 |
+
Get an example from the dataset and (possibly) apply random augmentations.
|
515 |
+
Args:
|
516 |
+
img_path (str): Image filename
|
517 |
+
center_x (float): Bounding box center x coordinate in the original image.
|
518 |
+
center_y (float): Bounding box center y coordinate in the original image.
|
519 |
+
width (float): Bounding box width.
|
520 |
+
height (float): Bounding box height.
|
521 |
+
keypoints_2d (np.array): Array with shape (N,3) containing the 2D keypoints in the original image coordinates.
|
522 |
+
keypoints_3d (np.array): Array with shape (N,4) containing the 3D keypoints.
|
523 |
+
smpl_params (Dict): SMPL parameter annotations.
|
524 |
+
has_smpl_params (Dict): Whether SMPL annotations are valid.
|
525 |
+
flip_kp_permutation (List): Permutation to apply to the keypoints after flipping.
|
526 |
+
patch_width (float): Output box width.
|
527 |
+
patch_height (float): Output box height.
|
528 |
+
mean (np.array): Array of shape (3,) containing the mean for normalizing the input image.
|
529 |
+
std (np.array): Array of shape (3,) containing the std for normalizing the input image.
|
530 |
+
do_augment (bool): Whether to apply data augmentation or not.
|
531 |
+
aug_config (CfgNode): Config containing augmentation parameters.
|
532 |
+
Returns:
|
533 |
+
return img_patch, keypoints_2d, keypoints_3d, smpl_params, has_smpl_params, img_size
|
534 |
+
img_patch (np.array): Cropped image patch of shape (3, patch_height, patch_height)
|
535 |
+
keypoints_2d (np.array): Array with shape (N,3) containing the transformed 2D keypoints.
|
536 |
+
keypoints_3d (np.array): Array with shape (N,4) containing the transformed 3D keypoints.
|
537 |
+
smpl_params (Dict): Transformed SMPL parameters.
|
538 |
+
has_smpl_params (Dict): Valid flag for transformed SMPL parameters.
|
539 |
+
img_size (np.array): Image size of the original image.
|
540 |
+
"""
|
541 |
+
if isinstance(img_path, str):
|
542 |
+
# 1. load image
|
543 |
+
cvimg = cv2.imread(img_path, cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION)
|
544 |
+
if not isinstance(cvimg, np.ndarray):
|
545 |
+
raise IOError("Fail to read %s" % img_path)
|
546 |
+
elif isinstance(img_path, np.ndarray):
|
547 |
+
cvimg = img_path
|
548 |
+
else:
|
549 |
+
raise TypeError('img_path must be either a string or a numpy array')
|
550 |
+
img_height, img_width, img_channels = cvimg.shape
|
551 |
+
|
552 |
+
img_size = np.array([img_height, img_width])
|
553 |
+
|
554 |
+
# 2. get augmentation params
|
555 |
+
if do_augment:
|
556 |
+
scale, rot, do_flip, do_extreme_crop, extreme_crop_lvl, color_scale, tx, ty = do_augmentation(augm_config)
|
557 |
+
else:
|
558 |
+
scale, rot, do_flip, do_extreme_crop, extreme_crop_lvl, color_scale, tx, ty = 1.0, 0, False, False, 0, [1.0, 1.0, 1.0], 0., 0.
|
559 |
+
|
560 |
+
if width < 1 or height < 1:
|
561 |
+
breakpoint()
|
562 |
+
|
563 |
+
if do_extreme_crop:
|
564 |
+
if extreme_crop_lvl == 0:
|
565 |
+
center_x1, center_y1, width1, height1 = extreme_cropping(center_x, center_y, width, height, keypoints_2d)
|
566 |
+
elif extreme_crop_lvl == 1:
|
567 |
+
center_x1, center_y1, width1, height1 = extreme_cropping_aggressive(center_x, center_y, width, height, keypoints_2d)
|
568 |
+
|
569 |
+
THRESH = 4
|
570 |
+
if width1 < THRESH or height1 < THRESH:
|
571 |
+
# print(f'{do_extreme_crop=}')
|
572 |
+
# print(f'width: {width}, height: {height}')
|
573 |
+
# print(f'width1: {width1}, height1: {height1}')
|
574 |
+
# print(f'center_x: {center_x}, center_y: {center_y}')
|
575 |
+
# print(f'center_x1: {center_x1}, center_y1: {center_y1}')
|
576 |
+
# print(f'keypoints_2d: {keypoints_2d}')
|
577 |
+
# print(f'\n\n', flush=True)
|
578 |
+
# breakpoint()
|
579 |
+
pass
|
580 |
+
# print(f'skip ==> width1: {width1}, height1: {height1}, width: {width}, height: {height}')
|
581 |
+
else:
|
582 |
+
center_x, center_y, width, height = center_x1, center_y1, width1, height1
|
583 |
+
|
584 |
+
center_x += width * tx
|
585 |
+
center_y += height * ty
|
586 |
+
|
587 |
+
# Process 3D keypoints
|
588 |
+
keypoints_3d = keypoint_3d_processing(keypoints_3d, flip_kp_permutation, rot, do_flip)
|
589 |
+
|
590 |
+
# 3. generate image patch
|
591 |
+
if use_skimage_antialias:
|
592 |
+
# Blur image to avoid aliasing artifacts
|
593 |
+
downsampling_factor = (patch_width / (width*scale))
|
594 |
+
if downsampling_factor > 1.1:
|
595 |
+
cvimg = gaussian(cvimg, sigma=(downsampling_factor-1)/2, channel_axis=2, preserve_range=True, truncate=3.0)
|
596 |
+
|
597 |
+
img_patch_cv, trans = generate_image_patch_cv2(cvimg,
|
598 |
+
center_x, center_y,
|
599 |
+
width, height,
|
600 |
+
patch_width, patch_height,
|
601 |
+
do_flip, scale, rot,
|
602 |
+
border_mode=border_mode)
|
603 |
+
# img_patch_cv, trans = generate_image_patch_skimage(cvimg,
|
604 |
+
# center_x, center_y,
|
605 |
+
# width, height,
|
606 |
+
# patch_width, patch_height,
|
607 |
+
# do_flip, scale, rot,
|
608 |
+
# border_mode=border_mode)
|
609 |
+
|
610 |
+
image = img_patch_cv.copy()
|
611 |
+
if is_bgr:
|
612 |
+
image = image[:, :, ::-1]
|
613 |
+
img_patch_cv = image.copy()
|
614 |
+
img_patch = convert_cvimg_to_tensor(image)
|
615 |
+
|
616 |
+
|
617 |
+
smpl_params, has_smpl_params = smpl_param_processing(smpl_params, has_smpl_params, rot, do_flip)
|
618 |
+
|
619 |
+
# apply normalization
|
620 |
+
for n_c in range(min(img_channels, 3)):
|
621 |
+
img_patch[n_c, :, :] = np.clip(img_patch[n_c, :, :] * color_scale[n_c], 0, 255)
|
622 |
+
if mean is not None and std is not None:
|
623 |
+
img_patch[n_c, :, :] = (img_patch[n_c, :, :] - mean[n_c]) / std[n_c]
|
624 |
+
if do_flip:
|
625 |
+
keypoints_2d = fliplr_keypoints(keypoints_2d, img_width, flip_kp_permutation)
|
626 |
+
|
627 |
+
|
628 |
+
for n_jt in range(len(keypoints_2d)):
|
629 |
+
keypoints_2d[n_jt, 0:2] = trans_point2d(keypoints_2d[n_jt, 0:2], trans)
|
630 |
+
keypoints_2d[:, :-1] = keypoints_2d[:, :-1] / patch_width - 0.5
|
631 |
+
|
632 |
+
if not return_trans:
|
633 |
+
return img_patch, keypoints_2d, keypoints_3d, smpl_params, has_smpl_params, img_size
|
634 |
+
else:
|
635 |
+
return img_patch, keypoints_2d, keypoints_3d, smpl_params, has_smpl_params, img_size, trans
|
636 |
+
|
637 |
+
def crop_to_hips(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array) -> Tuple:
|
638 |
+
"""
|
639 |
+
Extreme cropping: Crop the box up to the hip locations.
|
640 |
+
Args:
|
641 |
+
center_x (float): x coordinate of the bounding box center.
|
642 |
+
center_y (float): y coordinate of the bounding box center.
|
643 |
+
width (float): Bounding box width.
|
644 |
+
height (float): Bounding box height.
|
645 |
+
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
|
646 |
+
Returns:
|
647 |
+
center_x (float): x coordinate of the new bounding box center.
|
648 |
+
center_y (float): y coordinate of the new bounding box center.
|
649 |
+
width (float): New bounding box width.
|
650 |
+
height (float): New bounding box height.
|
651 |
+
"""
|
652 |
+
keypoints_2d = keypoints_2d.copy()
|
653 |
+
lower_body_keypoints = [10, 11, 13, 14, 19, 20, 21, 22, 23, 24, 25+0, 25+1, 25+4, 25+5]
|
654 |
+
keypoints_2d[lower_body_keypoints, :] = 0
|
655 |
+
if keypoints_2d[:, -1].sum() > 1:
|
656 |
+
center, scale = get_bbox(keypoints_2d)
|
657 |
+
center_x = center[0]
|
658 |
+
center_y = center[1]
|
659 |
+
width = 1.1 * scale[0]
|
660 |
+
height = 1.1 * scale[1]
|
661 |
+
return center_x, center_y, width, height
|
662 |
+
|
663 |
+
|
664 |
+
def crop_to_shoulders(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array):
|
665 |
+
"""
|
666 |
+
Extreme cropping: Crop the box up to the shoulder locations.
|
667 |
+
Args:
|
668 |
+
center_x (float): x coordinate of the bounding box center.
|
669 |
+
center_y (float): y coordinate of the bounding box center.
|
670 |
+
width (float): Bounding box width.
|
671 |
+
height (float): Bounding box height.
|
672 |
+
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
|
673 |
+
Returns:
|
674 |
+
center_x (float): x coordinate of the new bounding box center.
|
675 |
+
center_y (float): y coordinate of the new bounding box center.
|
676 |
+
width (float): New bounding box width.
|
677 |
+
height (float): New bounding box height.
|
678 |
+
"""
|
679 |
+
keypoints_2d = keypoints_2d.copy()
|
680 |
+
lower_body_keypoints = [3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 19, 20, 21, 22, 23, 24] + [25 + i for i in [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 14, 15, 16]]
|
681 |
+
keypoints_2d[lower_body_keypoints, :] = 0
|
682 |
+
center, scale = get_bbox(keypoints_2d)
|
683 |
+
if keypoints_2d[:, -1].sum() > 1:
|
684 |
+
center, scale = get_bbox(keypoints_2d)
|
685 |
+
center_x = center[0]
|
686 |
+
center_y = center[1]
|
687 |
+
width = 1.2 * scale[0]
|
688 |
+
height = 1.2 * scale[1]
|
689 |
+
return center_x, center_y, width, height
|
690 |
+
|
691 |
+
def crop_to_head(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array):
|
692 |
+
"""
|
693 |
+
Extreme cropping: Crop the box and keep on only the head.
|
694 |
+
Args:
|
695 |
+
center_x (float): x coordinate of the bounding box center.
|
696 |
+
center_y (float): y coordinate of the bounding box center.
|
697 |
+
width (float): Bounding box width.
|
698 |
+
height (float): Bounding box height.
|
699 |
+
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
|
700 |
+
Returns:
|
701 |
+
center_x (float): x coordinate of the new bounding box center.
|
702 |
+
center_y (float): y coordinate of the new bounding box center.
|
703 |
+
width (float): New bounding box width.
|
704 |
+
height (float): New bounding box height.
|
705 |
+
"""
|
706 |
+
keypoints_2d = keypoints_2d.copy()
|
707 |
+
lower_body_keypoints = [3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 19, 20, 21, 22, 23, 24] + [25 + i for i in [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 16]]
|
708 |
+
keypoints_2d[lower_body_keypoints, :] = 0
|
709 |
+
if keypoints_2d[:, -1].sum() > 1:
|
710 |
+
center, scale = get_bbox(keypoints_2d)
|
711 |
+
center_x = center[0]
|
712 |
+
center_y = center[1]
|
713 |
+
width = 1.3 * scale[0]
|
714 |
+
height = 1.3 * scale[1]
|
715 |
+
return center_x, center_y, width, height
|
716 |
+
|
717 |
+
def crop_torso_only(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array):
|
718 |
+
"""
|
719 |
+
Extreme cropping: Crop the box and keep on only the torso.
|
720 |
+
Args:
|
721 |
+
center_x (float): x coordinate of the bounding box center.
|
722 |
+
center_y (float): y coordinate of the bounding box center.
|
723 |
+
width (float): Bounding box width.
|
724 |
+
height (float): Bounding box height.
|
725 |
+
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
|
726 |
+
Returns:
|
727 |
+
center_x (float): x coordinate of the new bounding box center.
|
728 |
+
center_y (float): y coordinate of the new bounding box center.
|
729 |
+
width (float): New bounding box width.
|
730 |
+
height (float): New bounding box height.
|
731 |
+
"""
|
732 |
+
keypoints_2d = keypoints_2d.copy()
|
733 |
+
nontorso_body_keypoints = [0, 3, 4, 6, 7, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24] + [25 + i for i in [0, 1, 4, 5, 6, 7, 10, 11, 13, 17, 18]]
|
734 |
+
keypoints_2d[nontorso_body_keypoints, :] = 0
|
735 |
+
if keypoints_2d[:, -1].sum() > 1:
|
736 |
+
center, scale = get_bbox(keypoints_2d)
|
737 |
+
center_x = center[0]
|
738 |
+
center_y = center[1]
|
739 |
+
width = 1.1 * scale[0]
|
740 |
+
height = 1.1 * scale[1]
|
741 |
+
return center_x, center_y, width, height
|
742 |
+
|
743 |
+
def crop_rightarm_only(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array):
|
744 |
+
"""
|
745 |
+
Extreme cropping: Crop the box and keep on only the right arm.
|
746 |
+
Args:
|
747 |
+
center_x (float): x coordinate of the bounding box center.
|
748 |
+
center_y (float): y coordinate of the bounding box center.
|
749 |
+
width (float): Bounding box width.
|
750 |
+
height (float): Bounding box height.
|
751 |
+
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
|
752 |
+
Returns:
|
753 |
+
center_x (float): x coordinate of the new bounding box center.
|
754 |
+
center_y (float): y coordinate of the new bounding box center.
|
755 |
+
width (float): New bounding box width.
|
756 |
+
height (float): New bounding box height.
|
757 |
+
"""
|
758 |
+
keypoints_2d = keypoints_2d.copy()
|
759 |
+
nonrightarm_body_keypoints = [0, 1, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24] + [25 + i for i in [0, 1, 2, 3, 4, 5, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]]
|
760 |
+
keypoints_2d[nonrightarm_body_keypoints, :] = 0
|
761 |
+
if keypoints_2d[:, -1].sum() > 1:
|
762 |
+
center, scale = get_bbox(keypoints_2d)
|
763 |
+
center_x = center[0]
|
764 |
+
center_y = center[1]
|
765 |
+
width = 1.1 * scale[0]
|
766 |
+
height = 1.1 * scale[1]
|
767 |
+
return center_x, center_y, width, height
|
768 |
+
|
769 |
+
def crop_leftarm_only(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array):
|
770 |
+
"""
|
771 |
+
Extreme cropping: Crop the box and keep on only the left arm.
|
772 |
+
Args:
|
773 |
+
center_x (float): x coordinate of the bounding box center.
|
774 |
+
center_y (float): y coordinate of the bounding box center.
|
775 |
+
width (float): Bounding box width.
|
776 |
+
height (float): Bounding box height.
|
777 |
+
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
|
778 |
+
Returns:
|
779 |
+
center_x (float): x coordinate of the new bounding box center.
|
780 |
+
center_y (float): y coordinate of the new bounding box center.
|
781 |
+
width (float): New bounding box width.
|
782 |
+
height (float): New bounding box height.
|
783 |
+
"""
|
784 |
+
keypoints_2d = keypoints_2d.copy()
|
785 |
+
nonleftarm_body_keypoints = [0, 1, 2, 3, 4, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24] + [25 + i for i in [0, 1, 2, 3, 4, 5, 6, 7, 8, 12, 13, 14, 15, 16, 17, 18]]
|
786 |
+
keypoints_2d[nonleftarm_body_keypoints, :] = 0
|
787 |
+
if keypoints_2d[:, -1].sum() > 1:
|
788 |
+
center, scale = get_bbox(keypoints_2d)
|
789 |
+
center_x = center[0]
|
790 |
+
center_y = center[1]
|
791 |
+
width = 1.1 * scale[0]
|
792 |
+
height = 1.1 * scale[1]
|
793 |
+
return center_x, center_y, width, height
|
794 |
+
|
795 |
+
def crop_legs_only(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array):
|
796 |
+
"""
|
797 |
+
Extreme cropping: Crop the box and keep on only the legs.
|
798 |
+
Args:
|
799 |
+
center_x (float): x coordinate of the bounding box center.
|
800 |
+
center_y (float): y coordinate of the bounding box center.
|
801 |
+
width (float): Bounding box width.
|
802 |
+
height (float): Bounding box height.
|
803 |
+
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
|
804 |
+
Returns:
|
805 |
+
center_x (float): x coordinate of the new bounding box center.
|
806 |
+
center_y (float): y coordinate of the new bounding box center.
|
807 |
+
width (float): New bounding box width.
|
808 |
+
height (float): New bounding box height.
|
809 |
+
"""
|
810 |
+
keypoints_2d = keypoints_2d.copy()
|
811 |
+
nonlegs_body_keypoints = [0, 1, 2, 3, 4, 5, 6, 7, 15, 16, 17, 18] + [25 + i for i in [6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18]]
|
812 |
+
keypoints_2d[nonlegs_body_keypoints, :] = 0
|
813 |
+
if keypoints_2d[:, -1].sum() > 1:
|
814 |
+
center, scale = get_bbox(keypoints_2d)
|
815 |
+
center_x = center[0]
|
816 |
+
center_y = center[1]
|
817 |
+
width = 1.1 * scale[0]
|
818 |
+
height = 1.1 * scale[1]
|
819 |
+
return center_x, center_y, width, height
|
820 |
+
|
821 |
+
def crop_rightleg_only(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array):
|
822 |
+
"""
|
823 |
+
Extreme cropping: Crop the box and keep on only the right leg.
|
824 |
+
Args:
|
825 |
+
center_x (float): x coordinate of the bounding box center.
|
826 |
+
center_y (float): y coordinate of the bounding box center.
|
827 |
+
width (float): Bounding box width.
|
828 |
+
height (float): Bounding box height.
|
829 |
+
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
|
830 |
+
Returns:
|
831 |
+
center_x (float): x coordinate of the new bounding box center.
|
832 |
+
center_y (float): y coordinate of the new bounding box center.
|
833 |
+
width (float): New bounding box width.
|
834 |
+
height (float): New bounding box height.
|
835 |
+
"""
|
836 |
+
keypoints_2d = keypoints_2d.copy()
|
837 |
+
nonrightleg_body_keypoints = [0, 1, 2, 3, 4, 5, 6, 7, 8, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21] + [25 + i for i in [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]]
|
838 |
+
keypoints_2d[nonrightleg_body_keypoints, :] = 0
|
839 |
+
if keypoints_2d[:, -1].sum() > 1:
|
840 |
+
center, scale = get_bbox(keypoints_2d)
|
841 |
+
center_x = center[0]
|
842 |
+
center_y = center[1]
|
843 |
+
width = 1.1 * scale[0]
|
844 |
+
height = 1.1 * scale[1]
|
845 |
+
return center_x, center_y, width, height
|
846 |
+
|
847 |
+
def crop_leftleg_only(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array):
|
848 |
+
"""
|
849 |
+
Extreme cropping: Crop the box and keep on only the left leg.
|
850 |
+
Args:
|
851 |
+
center_x (float): x coordinate of the bounding box center.
|
852 |
+
center_y (float): y coordinate of the bounding box center.
|
853 |
+
width (float): Bounding box width.
|
854 |
+
height (float): Bounding box height.
|
855 |
+
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
|
856 |
+
Returns:
|
857 |
+
center_x (float): x coordinate of the new bounding box center.
|
858 |
+
center_y (float): y coordinate of the new bounding box center.
|
859 |
+
width (float): New bounding box width.
|
860 |
+
height (float): New bounding box height.
|
861 |
+
"""
|
862 |
+
keypoints_2d = keypoints_2d.copy()
|
863 |
+
nonleftleg_body_keypoints = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 15, 16, 17, 18, 22, 23, 24] + [25 + i for i in [0, 1, 2, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]]
|
864 |
+
keypoints_2d[nonleftleg_body_keypoints, :] = 0
|
865 |
+
if keypoints_2d[:, -1].sum() > 1:
|
866 |
+
center, scale = get_bbox(keypoints_2d)
|
867 |
+
center_x = center[0]
|
868 |
+
center_y = center[1]
|
869 |
+
width = 1.1 * scale[0]
|
870 |
+
height = 1.1 * scale[1]
|
871 |
+
return center_x, center_y, width, height
|
872 |
+
|
873 |
+
def full_body(keypoints_2d: np.array) -> bool:
|
874 |
+
"""
|
875 |
+
Check if all main body joints are visible.
|
876 |
+
Args:
|
877 |
+
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
|
878 |
+
Returns:
|
879 |
+
bool: True if all main body joints are visible.
|
880 |
+
"""
|
881 |
+
|
882 |
+
body_keypoints_openpose = [2, 3, 4, 5, 6, 7, 10, 11, 13, 14]
|
883 |
+
body_keypoints = [25 + i for i in [8, 7, 6, 9, 10, 11, 1, 0, 4, 5]]
|
884 |
+
return (np.maximum(keypoints_2d[body_keypoints, -1], keypoints_2d[body_keypoints_openpose, -1]) > 0).sum() == len(body_keypoints)
|
885 |
+
|
886 |
+
def upper_body(keypoints_2d: np.array):
|
887 |
+
"""
|
888 |
+
Check if all upper body joints are visible.
|
889 |
+
Args:
|
890 |
+
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
|
891 |
+
Returns:
|
892 |
+
bool: True if all main body joints are visible.
|
893 |
+
"""
|
894 |
+
lower_body_keypoints_openpose = [10, 11, 13, 14]
|
895 |
+
lower_body_keypoints = [25 + i for i in [1, 0, 4, 5]]
|
896 |
+
upper_body_keypoints_openpose = [0, 1, 15, 16, 17, 18]
|
897 |
+
upper_body_keypoints = [25+8, 25+9, 25+12, 25+13, 25+17, 25+18]
|
898 |
+
return ((keypoints_2d[lower_body_keypoints + lower_body_keypoints_openpose, -1] > 0).sum() == 0)\
|
899 |
+
and ((keypoints_2d[upper_body_keypoints + upper_body_keypoints_openpose, -1] > 0).sum() >= 2)
|
900 |
+
|
901 |
+
def get_bbox(keypoints_2d: np.array, rescale: float = 1.2) -> Tuple:
|
902 |
+
"""
|
903 |
+
Get center and scale for bounding box from openpose detections.
|
904 |
+
Args:
|
905 |
+
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
|
906 |
+
rescale (float): Scale factor to rescale bounding boxes computed from the keypoints.
|
907 |
+
Returns:
|
908 |
+
center (np.array): Array of shape (2,) containing the new bounding box center.
|
909 |
+
scale (float): New bounding box scale.
|
910 |
+
"""
|
911 |
+
valid = keypoints_2d[:,-1] > 0
|
912 |
+
valid_keypoints = keypoints_2d[valid][:,:-1]
|
913 |
+
center = 0.5 * (valid_keypoints.max(axis=0) + valid_keypoints.min(axis=0))
|
914 |
+
bbox_size = (valid_keypoints.max(axis=0) - valid_keypoints.min(axis=0))
|
915 |
+
# adjust bounding box tightness
|
916 |
+
scale = bbox_size
|
917 |
+
scale *= rescale
|
918 |
+
return center, scale
|
919 |
+
|
920 |
+
def extreme_cropping(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array) -> Tuple:
|
921 |
+
"""
|
922 |
+
Perform extreme cropping
|
923 |
+
Args:
|
924 |
+
center_x (float): x coordinate of bounding box center.
|
925 |
+
center_y (float): y coordinate of bounding box center.
|
926 |
+
width (float): bounding box width.
|
927 |
+
height (float): bounding box height.
|
928 |
+
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
|
929 |
+
rescale (float): Scale factor to rescale bounding boxes computed from the keypoints.
|
930 |
+
Returns:
|
931 |
+
center_x (float): x coordinate of bounding box center.
|
932 |
+
center_y (float): y coordinate of bounding box center.
|
933 |
+
width (float): bounding box width.
|
934 |
+
height (float): bounding box height.
|
935 |
+
"""
|
936 |
+
p = torch.rand(1).item()
|
937 |
+
if full_body(keypoints_2d):
|
938 |
+
if p < 0.7:
|
939 |
+
center_x, center_y, width, height = crop_to_hips(center_x, center_y, width, height, keypoints_2d)
|
940 |
+
elif p < 0.9:
|
941 |
+
center_x, center_y, width, height = crop_to_shoulders(center_x, center_y, width, height, keypoints_2d)
|
942 |
+
else:
|
943 |
+
center_x, center_y, width, height = crop_to_head(center_x, center_y, width, height, keypoints_2d)
|
944 |
+
elif upper_body(keypoints_2d):
|
945 |
+
if p < 0.9:
|
946 |
+
center_x, center_y, width, height = crop_to_shoulders(center_x, center_y, width, height, keypoints_2d)
|
947 |
+
else:
|
948 |
+
center_x, center_y, width, height = crop_to_head(center_x, center_y, width, height, keypoints_2d)
|
949 |
+
|
950 |
+
return center_x, center_y, max(width, height), max(width, height)
|
951 |
+
|
952 |
+
def extreme_cropping_aggressive(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array) -> Tuple:
|
953 |
+
"""
|
954 |
+
Perform aggressive extreme cropping
|
955 |
+
Args:
|
956 |
+
center_x (float): x coordinate of bounding box center.
|
957 |
+
center_y (float): y coordinate of bounding box center.
|
958 |
+
width (float): bounding box width.
|
959 |
+
height (float): bounding box height.
|
960 |
+
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
|
961 |
+
rescale (float): Scale factor to rescale bounding boxes computed from the keypoints.
|
962 |
+
Returns:
|
963 |
+
center_x (float): x coordinate of bounding box center.
|
964 |
+
center_y (float): y coordinate of bounding box center.
|
965 |
+
width (float): bounding box width.
|
966 |
+
height (float): bounding box height.
|
967 |
+
"""
|
968 |
+
p = torch.rand(1).item()
|
969 |
+
if full_body(keypoints_2d):
|
970 |
+
if p < 0.2:
|
971 |
+
center_x, center_y, width, height = crop_to_hips(center_x, center_y, width, height, keypoints_2d)
|
972 |
+
elif p < 0.3:
|
973 |
+
center_x, center_y, width, height = crop_to_shoulders(center_x, center_y, width, height, keypoints_2d)
|
974 |
+
elif p < 0.4:
|
975 |
+
center_x, center_y, width, height = crop_to_head(center_x, center_y, width, height, keypoints_2d)
|
976 |
+
elif p < 0.5:
|
977 |
+
center_x, center_y, width, height = crop_torso_only(center_x, center_y, width, height, keypoints_2d)
|
978 |
+
elif p < 0.6:
|
979 |
+
center_x, center_y, width, height = crop_rightarm_only(center_x, center_y, width, height, keypoints_2d)
|
980 |
+
elif p < 0.7:
|
981 |
+
center_x, center_y, width, height = crop_leftarm_only(center_x, center_y, width, height, keypoints_2d)
|
982 |
+
elif p < 0.8:
|
983 |
+
center_x, center_y, width, height = crop_legs_only(center_x, center_y, width, height, keypoints_2d)
|
984 |
+
elif p < 0.9:
|
985 |
+
center_x, center_y, width, height = crop_rightleg_only(center_x, center_y, width, height, keypoints_2d)
|
986 |
+
else:
|
987 |
+
center_x, center_y, width, height = crop_leftleg_only(center_x, center_y, width, height, keypoints_2d)
|
988 |
+
elif upper_body(keypoints_2d):
|
989 |
+
if p < 0.2:
|
990 |
+
center_x, center_y, width, height = crop_to_shoulders(center_x, center_y, width, height, keypoints_2d)
|
991 |
+
elif p < 0.4:
|
992 |
+
center_x, center_y, width, height = crop_to_head(center_x, center_y, width, height, keypoints_2d)
|
993 |
+
elif p < 0.6:
|
994 |
+
center_x, center_y, width, height = crop_torso_only(center_x, center_y, width, height, keypoints_2d)
|
995 |
+
elif p < 0.8:
|
996 |
+
center_x, center_y, width, height = crop_rightarm_only(center_x, center_y, width, height, keypoints_2d)
|
997 |
+
else:
|
998 |
+
center_x, center_y, width, height = crop_leftarm_only(center_x, center_y, width, height, keypoints_2d)
|
999 |
+
return center_x, center_y, max(width, height), max(width, height)
|
hmr2/datasets/vitdet_dataset.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict
|
2 |
+
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
from skimage.filters import gaussian
|
6 |
+
from yacs.config import CfgNode
|
7 |
+
import torch
|
8 |
+
|
9 |
+
from .utils import (convert_cvimg_to_tensor,
|
10 |
+
expand_to_aspect_ratio,
|
11 |
+
generate_image_patch_cv2)
|
12 |
+
|
13 |
+
DEFAULT_MEAN = 255. * np.array([0.485, 0.456, 0.406])
|
14 |
+
DEFAULT_STD = 255. * np.array([0.229, 0.224, 0.225])
|
15 |
+
|
16 |
+
class ViTDetDataset(torch.utils.data.Dataset):
|
17 |
+
|
18 |
+
def __init__(self,
|
19 |
+
cfg: CfgNode,
|
20 |
+
img_cv2: np.array,
|
21 |
+
boxes: np.array,
|
22 |
+
train: bool = False,
|
23 |
+
**kwargs):
|
24 |
+
super().__init__()
|
25 |
+
self.cfg = cfg
|
26 |
+
self.img_cv2 = img_cv2
|
27 |
+
# self.boxes = boxes
|
28 |
+
|
29 |
+
assert train == False, "ViTDetDataset is only for inference"
|
30 |
+
self.train = train
|
31 |
+
self.img_size = cfg.MODEL.IMAGE_SIZE
|
32 |
+
self.mean = 255. * np.array(self.cfg.MODEL.IMAGE_MEAN)
|
33 |
+
self.std = 255. * np.array(self.cfg.MODEL.IMAGE_STD)
|
34 |
+
|
35 |
+
# Preprocess annotations
|
36 |
+
boxes = boxes.astype(np.float32)
|
37 |
+
self.center = (boxes[:, 2:4] + boxes[:, 0:2]) / 2.0
|
38 |
+
self.scale = (boxes[:, 2:4] - boxes[:, 0:2]) / 200.0
|
39 |
+
self.personid = np.arange(len(boxes), dtype=np.int32)
|
40 |
+
|
41 |
+
def __len__(self) -> int:
|
42 |
+
return len(self.personid)
|
43 |
+
|
44 |
+
def __getitem__(self, idx: int) -> Dict[str, np.array]:
|
45 |
+
|
46 |
+
center = self.center[idx].copy()
|
47 |
+
center_x = center[0]
|
48 |
+
center_y = center[1]
|
49 |
+
|
50 |
+
scale = self.scale[idx]
|
51 |
+
BBOX_SHAPE = self.cfg.MODEL.get('BBOX_SHAPE', None)
|
52 |
+
bbox_size = expand_to_aspect_ratio(scale*200, target_aspect_ratio=BBOX_SHAPE).max()
|
53 |
+
|
54 |
+
patch_width = patch_height = self.img_size
|
55 |
+
|
56 |
+
# 3. generate image patch
|
57 |
+
# if use_skimage_antialias:
|
58 |
+
cvimg = self.img_cv2.copy()
|
59 |
+
if True:
|
60 |
+
# Blur image to avoid aliasing artifacts
|
61 |
+
downsampling_factor = ((bbox_size*1.0) / patch_width)
|
62 |
+
print(f'{downsampling_factor=}')
|
63 |
+
downsampling_factor = downsampling_factor / 2.0
|
64 |
+
if downsampling_factor > 1.1:
|
65 |
+
cvimg = gaussian(cvimg, sigma=(downsampling_factor-1)/2, channel_axis=2, preserve_range=True)
|
66 |
+
|
67 |
+
|
68 |
+
img_patch_cv, trans = generate_image_patch_cv2(cvimg,
|
69 |
+
center_x, center_y,
|
70 |
+
bbox_size, bbox_size,
|
71 |
+
patch_width, patch_height,
|
72 |
+
False, 1.0, 0,
|
73 |
+
border_mode=cv2.BORDER_CONSTANT)
|
74 |
+
img_patch_cv = img_patch_cv[:, :, ::-1]
|
75 |
+
img_patch = convert_cvimg_to_tensor(img_patch_cv)
|
76 |
+
|
77 |
+
# apply normalization
|
78 |
+
for n_c in range(min(self.img_cv2.shape[2], 3)):
|
79 |
+
img_patch[n_c, :, :] = (img_patch[n_c, :, :] - self.mean[n_c]) / self.std[n_c]
|
80 |
+
|
81 |
+
|
82 |
+
item = {
|
83 |
+
'img': img_patch,
|
84 |
+
'personid': int(self.personid[idx]),
|
85 |
+
}
|
86 |
+
item['box_center'] = self.center[idx].copy()
|
87 |
+
item['box_size'] = bbox_size
|
88 |
+
item['img_size'] = 1.0 * np.array([cvimg.shape[1], cvimg.shape[0]])
|
89 |
+
return item
|
hmr2/models/__init__.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
from .smpl_wrapper import SMPL
|
2 |
+
from .hmr2 import HMR2
|
3 |
+
from .discriminator import Discriminator
|
hmr2/models/backbones/__init__.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .vit import vit
|
2 |
+
|
3 |
+
def create_backbone(cfg):
|
4 |
+
if cfg.MODEL.BACKBONE.TYPE == 'vit':
|
5 |
+
return vit(cfg)
|
6 |
+
else:
|
7 |
+
raise NotImplementedError('Backbone type is not implemented')
|
hmr2/models/backbones/vit.py
ADDED
@@ -0,0 +1,348 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
import math
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from functools import partial
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.nn.functional as F
|
8 |
+
import torch.utils.checkpoint as checkpoint
|
9 |
+
|
10 |
+
from timm.models.layers import drop_path, to_2tuple, trunc_normal_
|
11 |
+
|
12 |
+
def vit(cfg):
|
13 |
+
return ViT(
|
14 |
+
img_size=(256, 192),
|
15 |
+
patch_size=16,
|
16 |
+
embed_dim=1280,
|
17 |
+
depth=32,
|
18 |
+
num_heads=16,
|
19 |
+
ratio=1,
|
20 |
+
use_checkpoint=False,
|
21 |
+
mlp_ratio=4,
|
22 |
+
qkv_bias=True,
|
23 |
+
drop_path_rate=0.55,
|
24 |
+
)
|
25 |
+
|
26 |
+
def get_abs_pos(abs_pos, h, w, ori_h, ori_w, has_cls_token=True):
|
27 |
+
"""
|
28 |
+
Calculate absolute positional embeddings. If needed, resize embeddings and remove cls_token
|
29 |
+
dimension for the original embeddings.
|
30 |
+
Args:
|
31 |
+
abs_pos (Tensor): absolute positional embeddings with (1, num_position, C).
|
32 |
+
has_cls_token (bool): If true, has 1 embedding in abs_pos for cls token.
|
33 |
+
hw (Tuple): size of input image tokens.
|
34 |
+
|
35 |
+
Returns:
|
36 |
+
Absolute positional embeddings after processing with shape (1, H, W, C)
|
37 |
+
"""
|
38 |
+
cls_token = None
|
39 |
+
B, L, C = abs_pos.shape
|
40 |
+
if has_cls_token:
|
41 |
+
cls_token = abs_pos[:, 0:1]
|
42 |
+
abs_pos = abs_pos[:, 1:]
|
43 |
+
|
44 |
+
if ori_h != h or ori_w != w:
|
45 |
+
new_abs_pos = F.interpolate(
|
46 |
+
abs_pos.reshape(1, ori_h, ori_w, -1).permute(0, 3, 1, 2),
|
47 |
+
size=(h, w),
|
48 |
+
mode="bicubic",
|
49 |
+
align_corners=False,
|
50 |
+
).permute(0, 2, 3, 1).reshape(B, -1, C)
|
51 |
+
|
52 |
+
else:
|
53 |
+
new_abs_pos = abs_pos
|
54 |
+
|
55 |
+
if cls_token is not None:
|
56 |
+
new_abs_pos = torch.cat([cls_token, new_abs_pos], dim=1)
|
57 |
+
return new_abs_pos
|
58 |
+
|
59 |
+
class DropPath(nn.Module):
|
60 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
61 |
+
"""
|
62 |
+
def __init__(self, drop_prob=None):
|
63 |
+
super(DropPath, self).__init__()
|
64 |
+
self.drop_prob = drop_prob
|
65 |
+
|
66 |
+
def forward(self, x):
|
67 |
+
return drop_path(x, self.drop_prob, self.training)
|
68 |
+
|
69 |
+
def extra_repr(self):
|
70 |
+
return 'p={}'.format(self.drop_prob)
|
71 |
+
|
72 |
+
class Mlp(nn.Module):
|
73 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
74 |
+
super().__init__()
|
75 |
+
out_features = out_features or in_features
|
76 |
+
hidden_features = hidden_features or in_features
|
77 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
78 |
+
self.act = act_layer()
|
79 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
80 |
+
self.drop = nn.Dropout(drop)
|
81 |
+
|
82 |
+
def forward(self, x):
|
83 |
+
x = self.fc1(x)
|
84 |
+
x = self.act(x)
|
85 |
+
x = self.fc2(x)
|
86 |
+
x = self.drop(x)
|
87 |
+
return x
|
88 |
+
|
89 |
+
class Attention(nn.Module):
|
90 |
+
def __init__(
|
91 |
+
self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.,
|
92 |
+
proj_drop=0., attn_head_dim=None,):
|
93 |
+
super().__init__()
|
94 |
+
self.num_heads = num_heads
|
95 |
+
head_dim = dim // num_heads
|
96 |
+
self.dim = dim
|
97 |
+
|
98 |
+
if attn_head_dim is not None:
|
99 |
+
head_dim = attn_head_dim
|
100 |
+
all_head_dim = head_dim * self.num_heads
|
101 |
+
|
102 |
+
self.scale = qk_scale or head_dim ** -0.5
|
103 |
+
|
104 |
+
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=qkv_bias)
|
105 |
+
|
106 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
107 |
+
self.proj = nn.Linear(all_head_dim, dim)
|
108 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
109 |
+
|
110 |
+
def forward(self, x):
|
111 |
+
B, N, C = x.shape
|
112 |
+
qkv = self.qkv(x)
|
113 |
+
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
114 |
+
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
115 |
+
|
116 |
+
q = q * self.scale
|
117 |
+
attn = (q @ k.transpose(-2, -1))
|
118 |
+
|
119 |
+
attn = attn.softmax(dim=-1)
|
120 |
+
attn = self.attn_drop(attn)
|
121 |
+
|
122 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
|
123 |
+
x = self.proj(x)
|
124 |
+
x = self.proj_drop(x)
|
125 |
+
|
126 |
+
return x
|
127 |
+
|
128 |
+
class Block(nn.Module):
|
129 |
+
|
130 |
+
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None,
|
131 |
+
drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU,
|
132 |
+
norm_layer=nn.LayerNorm, attn_head_dim=None
|
133 |
+
):
|
134 |
+
super().__init__()
|
135 |
+
|
136 |
+
self.norm1 = norm_layer(dim)
|
137 |
+
self.attn = Attention(
|
138 |
+
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
139 |
+
attn_drop=attn_drop, proj_drop=drop, attn_head_dim=attn_head_dim
|
140 |
+
)
|
141 |
+
|
142 |
+
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
143 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
144 |
+
self.norm2 = norm_layer(dim)
|
145 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
146 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
147 |
+
|
148 |
+
def forward(self, x):
|
149 |
+
x = x + self.drop_path(self.attn(self.norm1(x)))
|
150 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
151 |
+
return x
|
152 |
+
|
153 |
+
|
154 |
+
class PatchEmbed(nn.Module):
|
155 |
+
""" Image to Patch Embedding
|
156 |
+
"""
|
157 |
+
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, ratio=1):
|
158 |
+
super().__init__()
|
159 |
+
img_size = to_2tuple(img_size)
|
160 |
+
patch_size = to_2tuple(patch_size)
|
161 |
+
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) * (ratio ** 2)
|
162 |
+
self.patch_shape = (int(img_size[0] // patch_size[0] * ratio), int(img_size[1] // patch_size[1] * ratio))
|
163 |
+
self.origin_patch_shape = (int(img_size[0] // patch_size[0]), int(img_size[1] // patch_size[1]))
|
164 |
+
self.img_size = img_size
|
165 |
+
self.patch_size = patch_size
|
166 |
+
self.num_patches = num_patches
|
167 |
+
|
168 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=(patch_size[0] // ratio), padding=4 + 2 * (ratio//2-1))
|
169 |
+
|
170 |
+
def forward(self, x, **kwargs):
|
171 |
+
B, C, H, W = x.shape
|
172 |
+
x = self.proj(x)
|
173 |
+
Hp, Wp = x.shape[2], x.shape[3]
|
174 |
+
|
175 |
+
x = x.flatten(2).transpose(1, 2)
|
176 |
+
return x, (Hp, Wp)
|
177 |
+
|
178 |
+
|
179 |
+
class HybridEmbed(nn.Module):
|
180 |
+
""" CNN Feature Map Embedding
|
181 |
+
Extract feature map from CNN, flatten, project to embedding dim.
|
182 |
+
"""
|
183 |
+
def __init__(self, backbone, img_size=224, feature_size=None, in_chans=3, embed_dim=768):
|
184 |
+
super().__init__()
|
185 |
+
assert isinstance(backbone, nn.Module)
|
186 |
+
img_size = to_2tuple(img_size)
|
187 |
+
self.img_size = img_size
|
188 |
+
self.backbone = backbone
|
189 |
+
if feature_size is None:
|
190 |
+
with torch.no_grad():
|
191 |
+
training = backbone.training
|
192 |
+
if training:
|
193 |
+
backbone.eval()
|
194 |
+
o = self.backbone(torch.zeros(1, in_chans, img_size[0], img_size[1]))[-1]
|
195 |
+
feature_size = o.shape[-2:]
|
196 |
+
feature_dim = o.shape[1]
|
197 |
+
backbone.train(training)
|
198 |
+
else:
|
199 |
+
feature_size = to_2tuple(feature_size)
|
200 |
+
feature_dim = self.backbone.feature_info.channels()[-1]
|
201 |
+
self.num_patches = feature_size[0] * feature_size[1]
|
202 |
+
self.proj = nn.Linear(feature_dim, embed_dim)
|
203 |
+
|
204 |
+
def forward(self, x):
|
205 |
+
x = self.backbone(x)[-1]
|
206 |
+
x = x.flatten(2).transpose(1, 2)
|
207 |
+
x = self.proj(x)
|
208 |
+
return x
|
209 |
+
|
210 |
+
|
211 |
+
class ViT(nn.Module):
|
212 |
+
|
213 |
+
def __init__(self,
|
214 |
+
img_size=224, patch_size=16, in_chans=3, num_classes=80, embed_dim=768, depth=12,
|
215 |
+
num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
|
216 |
+
drop_path_rate=0., hybrid_backbone=None, norm_layer=None, use_checkpoint=False,
|
217 |
+
frozen_stages=-1, ratio=1, last_norm=True,
|
218 |
+
patch_padding='pad', freeze_attn=False, freeze_ffn=False,
|
219 |
+
):
|
220 |
+
# Protect mutable default arguments
|
221 |
+
super(ViT, self).__init__()
|
222 |
+
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
|
223 |
+
self.num_classes = num_classes
|
224 |
+
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
|
225 |
+
self.frozen_stages = frozen_stages
|
226 |
+
self.use_checkpoint = use_checkpoint
|
227 |
+
self.patch_padding = patch_padding
|
228 |
+
self.freeze_attn = freeze_attn
|
229 |
+
self.freeze_ffn = freeze_ffn
|
230 |
+
self.depth = depth
|
231 |
+
|
232 |
+
if hybrid_backbone is not None:
|
233 |
+
self.patch_embed = HybridEmbed(
|
234 |
+
hybrid_backbone, img_size=img_size, in_chans=in_chans, embed_dim=embed_dim)
|
235 |
+
else:
|
236 |
+
self.patch_embed = PatchEmbed(
|
237 |
+
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, ratio=ratio)
|
238 |
+
num_patches = self.patch_embed.num_patches
|
239 |
+
|
240 |
+
# since the pretraining model has class token
|
241 |
+
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
|
242 |
+
|
243 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
|
244 |
+
|
245 |
+
self.blocks = nn.ModuleList([
|
246 |
+
Block(
|
247 |
+
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
248 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
|
249 |
+
)
|
250 |
+
for i in range(depth)])
|
251 |
+
|
252 |
+
self.last_norm = norm_layer(embed_dim) if last_norm else nn.Identity()
|
253 |
+
|
254 |
+
if self.pos_embed is not None:
|
255 |
+
trunc_normal_(self.pos_embed, std=.02)
|
256 |
+
|
257 |
+
self._freeze_stages()
|
258 |
+
|
259 |
+
def _freeze_stages(self):
|
260 |
+
"""Freeze parameters."""
|
261 |
+
if self.frozen_stages >= 0:
|
262 |
+
self.patch_embed.eval()
|
263 |
+
for param in self.patch_embed.parameters():
|
264 |
+
param.requires_grad = False
|
265 |
+
|
266 |
+
for i in range(1, self.frozen_stages + 1):
|
267 |
+
m = self.blocks[i]
|
268 |
+
m.eval()
|
269 |
+
for param in m.parameters():
|
270 |
+
param.requires_grad = False
|
271 |
+
|
272 |
+
if self.freeze_attn:
|
273 |
+
for i in range(0, self.depth):
|
274 |
+
m = self.blocks[i]
|
275 |
+
m.attn.eval()
|
276 |
+
m.norm1.eval()
|
277 |
+
for param in m.attn.parameters():
|
278 |
+
param.requires_grad = False
|
279 |
+
for param in m.norm1.parameters():
|
280 |
+
param.requires_grad = False
|
281 |
+
|
282 |
+
if self.freeze_ffn:
|
283 |
+
self.pos_embed.requires_grad = False
|
284 |
+
self.patch_embed.eval()
|
285 |
+
for param in self.patch_embed.parameters():
|
286 |
+
param.requires_grad = False
|
287 |
+
for i in range(0, self.depth):
|
288 |
+
m = self.blocks[i]
|
289 |
+
m.mlp.eval()
|
290 |
+
m.norm2.eval()
|
291 |
+
for param in m.mlp.parameters():
|
292 |
+
param.requires_grad = False
|
293 |
+
for param in m.norm2.parameters():
|
294 |
+
param.requires_grad = False
|
295 |
+
|
296 |
+
def init_weights(self):
|
297 |
+
"""Initialize the weights in backbone.
|
298 |
+
Args:
|
299 |
+
pretrained (str, optional): Path to pre-trained weights.
|
300 |
+
Defaults to None.
|
301 |
+
"""
|
302 |
+
def _init_weights(m):
|
303 |
+
if isinstance(m, nn.Linear):
|
304 |
+
trunc_normal_(m.weight, std=.02)
|
305 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
306 |
+
nn.init.constant_(m.bias, 0)
|
307 |
+
elif isinstance(m, nn.LayerNorm):
|
308 |
+
nn.init.constant_(m.bias, 0)
|
309 |
+
nn.init.constant_(m.weight, 1.0)
|
310 |
+
|
311 |
+
self.apply(_init_weights)
|
312 |
+
|
313 |
+
def get_num_layers(self):
|
314 |
+
return len(self.blocks)
|
315 |
+
|
316 |
+
@torch.jit.ignore
|
317 |
+
def no_weight_decay(self):
|
318 |
+
return {'pos_embed', 'cls_token'}
|
319 |
+
|
320 |
+
def forward_features(self, x):
|
321 |
+
B, C, H, W = x.shape
|
322 |
+
x, (Hp, Wp) = self.patch_embed(x)
|
323 |
+
|
324 |
+
if self.pos_embed is not None:
|
325 |
+
# fit for multiple GPU training
|
326 |
+
# since the first element for pos embed (sin-cos manner) is zero, it will cause no difference
|
327 |
+
x = x + self.pos_embed[:, 1:] + self.pos_embed[:, :1]
|
328 |
+
|
329 |
+
for blk in self.blocks:
|
330 |
+
if self.use_checkpoint:
|
331 |
+
x = checkpoint.checkpoint(blk, x)
|
332 |
+
else:
|
333 |
+
x = blk(x)
|
334 |
+
|
335 |
+
x = self.last_norm(x)
|
336 |
+
|
337 |
+
xp = x.permute(0, 2, 1).reshape(B, -1, Hp, Wp).contiguous()
|
338 |
+
|
339 |
+
return xp
|
340 |
+
|
341 |
+
def forward(self, x):
|
342 |
+
x = self.forward_features(x)
|
343 |
+
return x
|
344 |
+
|
345 |
+
def train(self, mode=True):
|
346 |
+
"""Convert the model into training mode."""
|
347 |
+
super().train(mode)
|
348 |
+
self._freeze_stages()
|
hmr2/models/backbones/vit_vitpose.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# import mmcv
|
2 |
+
# import mmpose
|
3 |
+
# from mmpose.models import build_posenet
|
4 |
+
# from mmcv.runner import load_checkpoint
|
5 |
+
# from pathlib import Path
|
6 |
+
|
7 |
+
# def vit(cfg):
|
8 |
+
# vitpose_dir = Path(mmpose.__file__).parent.parent
|
9 |
+
# config = f'{vitpose_dir}/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/ViTPose_huge_coco_256x192.py'
|
10 |
+
# # checkpoint = f'{vitpose_dir}/models/vitpose-h-multi-coco.pth'
|
11 |
+
|
12 |
+
# config = mmcv.Config.fromfile(config)
|
13 |
+
# config.model.pretrained = None
|
14 |
+
# model = build_posenet(config.model)
|
15 |
+
# # load_checkpoint(model, checkpoint, map_location='cpu')
|
16 |
+
|
17 |
+
# return model.backbone
|
hmr2/models/components/__init__.py
ADDED
File without changes
|
hmr2/models/components/pose_transformer.py
ADDED
@@ -0,0 +1,358 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from inspect import isfunction
|
2 |
+
from typing import Callable, Optional
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from einops import rearrange
|
6 |
+
from einops.layers.torch import Rearrange
|
7 |
+
from torch import nn
|
8 |
+
|
9 |
+
from .t_cond_mlp import (
|
10 |
+
AdaptiveLayerNorm1D,
|
11 |
+
FrequencyEmbedder,
|
12 |
+
normalization_layer,
|
13 |
+
)
|
14 |
+
# from .vit import Attention, FeedForward
|
15 |
+
|
16 |
+
|
17 |
+
def exists(val):
|
18 |
+
return val is not None
|
19 |
+
|
20 |
+
|
21 |
+
def default(val, d):
|
22 |
+
if exists(val):
|
23 |
+
return val
|
24 |
+
return d() if isfunction(d) else d
|
25 |
+
|
26 |
+
|
27 |
+
class PreNorm(nn.Module):
|
28 |
+
def __init__(self, dim: int, fn: Callable, norm: str = "layer", norm_cond_dim: int = -1):
|
29 |
+
super().__init__()
|
30 |
+
self.norm = normalization_layer(norm, dim, norm_cond_dim)
|
31 |
+
self.fn = fn
|
32 |
+
|
33 |
+
def forward(self, x: torch.Tensor, *args, **kwargs):
|
34 |
+
if isinstance(self.norm, AdaptiveLayerNorm1D):
|
35 |
+
return self.fn(self.norm(x, *args), **kwargs)
|
36 |
+
else:
|
37 |
+
return self.fn(self.norm(x), **kwargs)
|
38 |
+
|
39 |
+
|
40 |
+
class FeedForward(nn.Module):
|
41 |
+
def __init__(self, dim, hidden_dim, dropout=0.0):
|
42 |
+
super().__init__()
|
43 |
+
self.net = nn.Sequential(
|
44 |
+
nn.Linear(dim, hidden_dim),
|
45 |
+
nn.GELU(),
|
46 |
+
nn.Dropout(dropout),
|
47 |
+
nn.Linear(hidden_dim, dim),
|
48 |
+
nn.Dropout(dropout),
|
49 |
+
)
|
50 |
+
|
51 |
+
def forward(self, x):
|
52 |
+
return self.net(x)
|
53 |
+
|
54 |
+
|
55 |
+
class Attention(nn.Module):
|
56 |
+
def __init__(self, dim, heads=8, dim_head=64, dropout=0.0):
|
57 |
+
super().__init__()
|
58 |
+
inner_dim = dim_head * heads
|
59 |
+
project_out = not (heads == 1 and dim_head == dim)
|
60 |
+
|
61 |
+
self.heads = heads
|
62 |
+
self.scale = dim_head**-0.5
|
63 |
+
|
64 |
+
self.attend = nn.Softmax(dim=-1)
|
65 |
+
self.dropout = nn.Dropout(dropout)
|
66 |
+
|
67 |
+
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias=False)
|
68 |
+
|
69 |
+
self.to_out = (
|
70 |
+
nn.Sequential(nn.Linear(inner_dim, dim), nn.Dropout(dropout))
|
71 |
+
if project_out
|
72 |
+
else nn.Identity()
|
73 |
+
)
|
74 |
+
|
75 |
+
def forward(self, x):
|
76 |
+
qkv = self.to_qkv(x).chunk(3, dim=-1)
|
77 |
+
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=self.heads), qkv)
|
78 |
+
|
79 |
+
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
|
80 |
+
|
81 |
+
attn = self.attend(dots)
|
82 |
+
attn = self.dropout(attn)
|
83 |
+
|
84 |
+
out = torch.matmul(attn, v)
|
85 |
+
out = rearrange(out, "b h n d -> b n (h d)")
|
86 |
+
return self.to_out(out)
|
87 |
+
|
88 |
+
|
89 |
+
class CrossAttention(nn.Module):
|
90 |
+
def __init__(self, dim, context_dim=None, heads=8, dim_head=64, dropout=0.0):
|
91 |
+
super().__init__()
|
92 |
+
inner_dim = dim_head * heads
|
93 |
+
project_out = not (heads == 1 and dim_head == dim)
|
94 |
+
|
95 |
+
self.heads = heads
|
96 |
+
self.scale = dim_head**-0.5
|
97 |
+
|
98 |
+
self.attend = nn.Softmax(dim=-1)
|
99 |
+
self.dropout = nn.Dropout(dropout)
|
100 |
+
|
101 |
+
context_dim = default(context_dim, dim)
|
102 |
+
self.to_kv = nn.Linear(context_dim, inner_dim * 2, bias=False)
|
103 |
+
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
104 |
+
|
105 |
+
self.to_out = (
|
106 |
+
nn.Sequential(nn.Linear(inner_dim, dim), nn.Dropout(dropout))
|
107 |
+
if project_out
|
108 |
+
else nn.Identity()
|
109 |
+
)
|
110 |
+
|
111 |
+
def forward(self, x, context=None):
|
112 |
+
context = default(context, x)
|
113 |
+
k, v = self.to_kv(context).chunk(2, dim=-1)
|
114 |
+
q = self.to_q(x)
|
115 |
+
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=self.heads), [q, k, v])
|
116 |
+
|
117 |
+
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
|
118 |
+
|
119 |
+
attn = self.attend(dots)
|
120 |
+
attn = self.dropout(attn)
|
121 |
+
|
122 |
+
out = torch.matmul(attn, v)
|
123 |
+
out = rearrange(out, "b h n d -> b n (h d)")
|
124 |
+
return self.to_out(out)
|
125 |
+
|
126 |
+
|
127 |
+
class Transformer(nn.Module):
|
128 |
+
def __init__(
|
129 |
+
self,
|
130 |
+
dim: int,
|
131 |
+
depth: int,
|
132 |
+
heads: int,
|
133 |
+
dim_head: int,
|
134 |
+
mlp_dim: int,
|
135 |
+
dropout: float = 0.0,
|
136 |
+
norm: str = "layer",
|
137 |
+
norm_cond_dim: int = -1,
|
138 |
+
):
|
139 |
+
super().__init__()
|
140 |
+
self.layers = nn.ModuleList([])
|
141 |
+
for _ in range(depth):
|
142 |
+
sa = Attention(dim, heads=heads, dim_head=dim_head, dropout=dropout)
|
143 |
+
ff = FeedForward(dim, mlp_dim, dropout=dropout)
|
144 |
+
self.layers.append(
|
145 |
+
nn.ModuleList(
|
146 |
+
[
|
147 |
+
PreNorm(dim, sa, norm=norm, norm_cond_dim=norm_cond_dim),
|
148 |
+
PreNorm(dim, ff, norm=norm, norm_cond_dim=norm_cond_dim),
|
149 |
+
]
|
150 |
+
)
|
151 |
+
)
|
152 |
+
|
153 |
+
def forward(self, x: torch.Tensor, *args):
|
154 |
+
for attn, ff in self.layers:
|
155 |
+
x = attn(x, *args) + x
|
156 |
+
x = ff(x, *args) + x
|
157 |
+
return x
|
158 |
+
|
159 |
+
|
160 |
+
class TransformerCrossAttn(nn.Module):
|
161 |
+
def __init__(
|
162 |
+
self,
|
163 |
+
dim: int,
|
164 |
+
depth: int,
|
165 |
+
heads: int,
|
166 |
+
dim_head: int,
|
167 |
+
mlp_dim: int,
|
168 |
+
dropout: float = 0.0,
|
169 |
+
norm: str = "layer",
|
170 |
+
norm_cond_dim: int = -1,
|
171 |
+
context_dim: Optional[int] = None,
|
172 |
+
):
|
173 |
+
super().__init__()
|
174 |
+
self.layers = nn.ModuleList([])
|
175 |
+
for _ in range(depth):
|
176 |
+
sa = Attention(dim, heads=heads, dim_head=dim_head, dropout=dropout)
|
177 |
+
ca = CrossAttention(
|
178 |
+
dim, context_dim=context_dim, heads=heads, dim_head=dim_head, dropout=dropout
|
179 |
+
)
|
180 |
+
ff = FeedForward(dim, mlp_dim, dropout=dropout)
|
181 |
+
self.layers.append(
|
182 |
+
nn.ModuleList(
|
183 |
+
[
|
184 |
+
PreNorm(dim, sa, norm=norm, norm_cond_dim=norm_cond_dim),
|
185 |
+
PreNorm(dim, ca, norm=norm, norm_cond_dim=norm_cond_dim),
|
186 |
+
PreNorm(dim, ff, norm=norm, norm_cond_dim=norm_cond_dim),
|
187 |
+
]
|
188 |
+
)
|
189 |
+
)
|
190 |
+
|
191 |
+
def forward(self, x: torch.Tensor, *args, context=None, context_list=None):
|
192 |
+
if context_list is None:
|
193 |
+
context_list = [context] * len(self.layers)
|
194 |
+
if len(context_list) != len(self.layers):
|
195 |
+
raise ValueError(f"len(context_list) != len(self.layers) ({len(context_list)} != {len(self.layers)})")
|
196 |
+
|
197 |
+
for i, (self_attn, cross_attn, ff) in enumerate(self.layers):
|
198 |
+
x = self_attn(x, *args) + x
|
199 |
+
x = cross_attn(x, *args, context=context_list[i]) + x
|
200 |
+
x = ff(x, *args) + x
|
201 |
+
return x
|
202 |
+
|
203 |
+
|
204 |
+
class DropTokenDropout(nn.Module):
|
205 |
+
def __init__(self, p: float = 0.1):
|
206 |
+
super().__init__()
|
207 |
+
if p < 0 or p > 1:
|
208 |
+
raise ValueError(
|
209 |
+
"dropout probability has to be between 0 and 1, " "but got {}".format(p)
|
210 |
+
)
|
211 |
+
self.p = p
|
212 |
+
|
213 |
+
def forward(self, x: torch.Tensor):
|
214 |
+
# x: (batch_size, seq_len, dim)
|
215 |
+
if self.training and self.p > 0:
|
216 |
+
zero_mask = torch.full_like(x[0, :, 0], self.p).bernoulli().bool()
|
217 |
+
# TODO: permutation idx for each batch using torch.argsort
|
218 |
+
if zero_mask.any():
|
219 |
+
x = x[:, ~zero_mask, :]
|
220 |
+
return x
|
221 |
+
|
222 |
+
|
223 |
+
class ZeroTokenDropout(nn.Module):
|
224 |
+
def __init__(self, p: float = 0.1):
|
225 |
+
super().__init__()
|
226 |
+
if p < 0 or p > 1:
|
227 |
+
raise ValueError(
|
228 |
+
"dropout probability has to be between 0 and 1, " "but got {}".format(p)
|
229 |
+
)
|
230 |
+
self.p = p
|
231 |
+
|
232 |
+
def forward(self, x: torch.Tensor):
|
233 |
+
# x: (batch_size, seq_len, dim)
|
234 |
+
if self.training and self.p > 0:
|
235 |
+
zero_mask = torch.full_like(x[:, :, 0], self.p).bernoulli().bool()
|
236 |
+
# Zero-out the masked tokens
|
237 |
+
x[zero_mask, :] = 0
|
238 |
+
return x
|
239 |
+
|
240 |
+
|
241 |
+
class TransformerEncoder(nn.Module):
|
242 |
+
def __init__(
|
243 |
+
self,
|
244 |
+
num_tokens: int,
|
245 |
+
token_dim: int,
|
246 |
+
dim: int,
|
247 |
+
depth: int,
|
248 |
+
heads: int,
|
249 |
+
mlp_dim: int,
|
250 |
+
dim_head: int = 64,
|
251 |
+
dropout: float = 0.0,
|
252 |
+
emb_dropout: float = 0.0,
|
253 |
+
emb_dropout_type: str = "drop",
|
254 |
+
emb_dropout_loc: str = "token",
|
255 |
+
norm: str = "layer",
|
256 |
+
norm_cond_dim: int = -1,
|
257 |
+
token_pe_numfreq: int = -1,
|
258 |
+
):
|
259 |
+
super().__init__()
|
260 |
+
if token_pe_numfreq > 0:
|
261 |
+
token_dim_new = token_dim * (2 * token_pe_numfreq + 1)
|
262 |
+
self.to_token_embedding = nn.Sequential(
|
263 |
+
Rearrange("b n d -> (b n) d", n=num_tokens, d=token_dim),
|
264 |
+
FrequencyEmbedder(token_pe_numfreq, token_pe_numfreq - 1),
|
265 |
+
Rearrange("(b n) d -> b n d", n=num_tokens, d=token_dim_new),
|
266 |
+
nn.Linear(token_dim_new, dim),
|
267 |
+
)
|
268 |
+
else:
|
269 |
+
self.to_token_embedding = nn.Linear(token_dim, dim)
|
270 |
+
self.pos_embedding = nn.Parameter(torch.randn(1, num_tokens, dim))
|
271 |
+
if emb_dropout_type == "drop":
|
272 |
+
self.dropout = DropTokenDropout(emb_dropout)
|
273 |
+
elif emb_dropout_type == "zero":
|
274 |
+
self.dropout = ZeroTokenDropout(emb_dropout)
|
275 |
+
else:
|
276 |
+
raise ValueError(f"Unknown emb_dropout_type: {emb_dropout_type}")
|
277 |
+
self.emb_dropout_loc = emb_dropout_loc
|
278 |
+
|
279 |
+
self.transformer = Transformer(
|
280 |
+
dim, depth, heads, dim_head, mlp_dim, dropout, norm=norm, norm_cond_dim=norm_cond_dim
|
281 |
+
)
|
282 |
+
|
283 |
+
def forward(self, inp: torch.Tensor, *args, **kwargs):
|
284 |
+
x = inp
|
285 |
+
|
286 |
+
if self.emb_dropout_loc == "input":
|
287 |
+
x = self.dropout(x)
|
288 |
+
x = self.to_token_embedding(x)
|
289 |
+
|
290 |
+
if self.emb_dropout_loc == "token":
|
291 |
+
x = self.dropout(x)
|
292 |
+
b, n, _ = x.shape
|
293 |
+
x += self.pos_embedding[:, :n]
|
294 |
+
|
295 |
+
if self.emb_dropout_loc == "token_afterpos":
|
296 |
+
x = self.dropout(x)
|
297 |
+
x = self.transformer(x, *args)
|
298 |
+
return x
|
299 |
+
|
300 |
+
|
301 |
+
class TransformerDecoder(nn.Module):
|
302 |
+
def __init__(
|
303 |
+
self,
|
304 |
+
num_tokens: int,
|
305 |
+
token_dim: int,
|
306 |
+
dim: int,
|
307 |
+
depth: int,
|
308 |
+
heads: int,
|
309 |
+
mlp_dim: int,
|
310 |
+
dim_head: int = 64,
|
311 |
+
dropout: float = 0.0,
|
312 |
+
emb_dropout: float = 0.0,
|
313 |
+
emb_dropout_type: str = 'drop',
|
314 |
+
norm: str = "layer",
|
315 |
+
norm_cond_dim: int = -1,
|
316 |
+
context_dim: Optional[int] = None,
|
317 |
+
skip_token_embedding: bool = False,
|
318 |
+
):
|
319 |
+
super().__init__()
|
320 |
+
if not skip_token_embedding:
|
321 |
+
self.to_token_embedding = nn.Linear(token_dim, dim)
|
322 |
+
else:
|
323 |
+
self.to_token_embedding = nn.Identity()
|
324 |
+
if token_dim != dim:
|
325 |
+
raise ValueError(
|
326 |
+
f"token_dim ({token_dim}) != dim ({dim}) when skip_token_embedding is True"
|
327 |
+
)
|
328 |
+
|
329 |
+
self.pos_embedding = nn.Parameter(torch.randn(1, num_tokens, dim))
|
330 |
+
if emb_dropout_type == "drop":
|
331 |
+
self.dropout = DropTokenDropout(emb_dropout)
|
332 |
+
elif emb_dropout_type == "zero":
|
333 |
+
self.dropout = ZeroTokenDropout(emb_dropout)
|
334 |
+
elif emb_dropout_type == "normal":
|
335 |
+
self.dropout = nn.Dropout(emb_dropout)
|
336 |
+
|
337 |
+
self.transformer = TransformerCrossAttn(
|
338 |
+
dim,
|
339 |
+
depth,
|
340 |
+
heads,
|
341 |
+
dim_head,
|
342 |
+
mlp_dim,
|
343 |
+
dropout,
|
344 |
+
norm=norm,
|
345 |
+
norm_cond_dim=norm_cond_dim,
|
346 |
+
context_dim=context_dim,
|
347 |
+
)
|
348 |
+
|
349 |
+
def forward(self, inp: torch.Tensor, *args, context=None, context_list=None):
|
350 |
+
x = self.to_token_embedding(inp)
|
351 |
+
b, n, _ = x.shape
|
352 |
+
|
353 |
+
x = self.dropout(x)
|
354 |
+
x += self.pos_embedding[:, :n]
|
355 |
+
|
356 |
+
x = self.transformer(x, *args, context=context, context_list=context_list)
|
357 |
+
return x
|
358 |
+
|
hmr2/models/components/t_cond_mlp.py
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
from typing import List, Optional
|
3 |
+
|
4 |
+
import torch
|
5 |
+
|
6 |
+
|
7 |
+
class AdaptiveLayerNorm1D(torch.nn.Module):
|
8 |
+
def __init__(self, data_dim: int, norm_cond_dim: int):
|
9 |
+
super().__init__()
|
10 |
+
if data_dim <= 0:
|
11 |
+
raise ValueError(f"data_dim must be positive, but got {data_dim}")
|
12 |
+
if norm_cond_dim <= 0:
|
13 |
+
raise ValueError(f"norm_cond_dim must be positive, but got {norm_cond_dim}")
|
14 |
+
self.norm = torch.nn.LayerNorm(
|
15 |
+
data_dim
|
16 |
+
) # TODO: Check if elementwise_affine=True is correct
|
17 |
+
self.linear = torch.nn.Linear(norm_cond_dim, 2 * data_dim)
|
18 |
+
torch.nn.init.zeros_(self.linear.weight)
|
19 |
+
torch.nn.init.zeros_(self.linear.bias)
|
20 |
+
|
21 |
+
def forward(self, x: torch.Tensor, t: torch.Tensor) -> torch.Tensor:
|
22 |
+
# x: (batch, ..., data_dim)
|
23 |
+
# t: (batch, norm_cond_dim)
|
24 |
+
# return: (batch, data_dim)
|
25 |
+
x = self.norm(x)
|
26 |
+
alpha, beta = self.linear(t).chunk(2, dim=-1)
|
27 |
+
|
28 |
+
# Add singleton dimensions to alpha and beta
|
29 |
+
if x.dim() > 2:
|
30 |
+
alpha = alpha.view(alpha.shape[0], *([1] * (x.dim() - 2)), alpha.shape[1])
|
31 |
+
beta = beta.view(beta.shape[0], *([1] * (x.dim() - 2)), beta.shape[1])
|
32 |
+
|
33 |
+
return x * (1 + alpha) + beta
|
34 |
+
|
35 |
+
|
36 |
+
class SequentialCond(torch.nn.Sequential):
|
37 |
+
def forward(self, input, *args, **kwargs):
|
38 |
+
for module in self:
|
39 |
+
if isinstance(module, (AdaptiveLayerNorm1D, SequentialCond, ResidualMLPBlock)):
|
40 |
+
# print(f'Passing on args to {module}', [a.shape for a in args])
|
41 |
+
input = module(input, *args, **kwargs)
|
42 |
+
else:
|
43 |
+
# print(f'Skipping passing args to {module}', [a.shape for a in args])
|
44 |
+
input = module(input)
|
45 |
+
return input
|
46 |
+
|
47 |
+
|
48 |
+
def normalization_layer(norm: Optional[str], dim: int, norm_cond_dim: int = -1):
|
49 |
+
if norm == "batch":
|
50 |
+
return torch.nn.BatchNorm1d(dim)
|
51 |
+
elif norm == "layer":
|
52 |
+
return torch.nn.LayerNorm(dim)
|
53 |
+
elif norm == "ada":
|
54 |
+
assert norm_cond_dim > 0, f"norm_cond_dim must be positive, got {norm_cond_dim}"
|
55 |
+
return AdaptiveLayerNorm1D(dim, norm_cond_dim)
|
56 |
+
elif norm is None:
|
57 |
+
return torch.nn.Identity()
|
58 |
+
else:
|
59 |
+
raise ValueError(f"Unknown norm: {norm}")
|
60 |
+
|
61 |
+
|
62 |
+
def linear_norm_activ_dropout(
|
63 |
+
input_dim: int,
|
64 |
+
output_dim: int,
|
65 |
+
activation: torch.nn.Module = torch.nn.ReLU(),
|
66 |
+
bias: bool = True,
|
67 |
+
norm: Optional[str] = "layer", # Options: ada/batch/layer
|
68 |
+
dropout: float = 0.0,
|
69 |
+
norm_cond_dim: int = -1,
|
70 |
+
) -> SequentialCond:
|
71 |
+
layers = []
|
72 |
+
layers.append(torch.nn.Linear(input_dim, output_dim, bias=bias))
|
73 |
+
if norm is not None:
|
74 |
+
layers.append(normalization_layer(norm, output_dim, norm_cond_dim))
|
75 |
+
layers.append(copy.deepcopy(activation))
|
76 |
+
if dropout > 0.0:
|
77 |
+
layers.append(torch.nn.Dropout(dropout))
|
78 |
+
return SequentialCond(*layers)
|
79 |
+
|
80 |
+
|
81 |
+
def create_simple_mlp(
|
82 |
+
input_dim: int,
|
83 |
+
hidden_dims: List[int],
|
84 |
+
output_dim: int,
|
85 |
+
activation: torch.nn.Module = torch.nn.ReLU(),
|
86 |
+
bias: bool = True,
|
87 |
+
norm: Optional[str] = "layer", # Options: ada/batch/layer
|
88 |
+
dropout: float = 0.0,
|
89 |
+
norm_cond_dim: int = -1,
|
90 |
+
) -> SequentialCond:
|
91 |
+
layers = []
|
92 |
+
prev_dim = input_dim
|
93 |
+
for hidden_dim in hidden_dims:
|
94 |
+
layers.extend(
|
95 |
+
linear_norm_activ_dropout(
|
96 |
+
prev_dim, hidden_dim, activation, bias, norm, dropout, norm_cond_dim
|
97 |
+
)
|
98 |
+
)
|
99 |
+
prev_dim = hidden_dim
|
100 |
+
layers.append(torch.nn.Linear(prev_dim, output_dim, bias=bias))
|
101 |
+
return SequentialCond(*layers)
|
102 |
+
|
103 |
+
|
104 |
+
class ResidualMLPBlock(torch.nn.Module):
|
105 |
+
def __init__(
|
106 |
+
self,
|
107 |
+
input_dim: int,
|
108 |
+
hidden_dim: int,
|
109 |
+
num_hidden_layers: int,
|
110 |
+
output_dim: int,
|
111 |
+
activation: torch.nn.Module = torch.nn.ReLU(),
|
112 |
+
bias: bool = True,
|
113 |
+
norm: Optional[str] = "layer", # Options: ada/batch/layer
|
114 |
+
dropout: float = 0.0,
|
115 |
+
norm_cond_dim: int = -1,
|
116 |
+
):
|
117 |
+
super().__init__()
|
118 |
+
if not (input_dim == output_dim == hidden_dim):
|
119 |
+
raise NotImplementedError(
|
120 |
+
f"input_dim {input_dim} != output_dim {output_dim} is not implemented"
|
121 |
+
)
|
122 |
+
|
123 |
+
layers = []
|
124 |
+
prev_dim = input_dim
|
125 |
+
for i in range(num_hidden_layers):
|
126 |
+
layers.append(
|
127 |
+
linear_norm_activ_dropout(
|
128 |
+
prev_dim, hidden_dim, activation, bias, norm, dropout, norm_cond_dim
|
129 |
+
)
|
130 |
+
)
|
131 |
+
prev_dim = hidden_dim
|
132 |
+
self.model = SequentialCond(*layers)
|
133 |
+
self.skip = torch.nn.Identity()
|
134 |
+
|
135 |
+
def forward(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor:
|
136 |
+
return x + self.model(x, *args, **kwargs)
|
137 |
+
|
138 |
+
|
139 |
+
class ResidualMLP(torch.nn.Module):
|
140 |
+
def __init__(
|
141 |
+
self,
|
142 |
+
input_dim: int,
|
143 |
+
hidden_dim: int,
|
144 |
+
num_hidden_layers: int,
|
145 |
+
output_dim: int,
|
146 |
+
activation: torch.nn.Module = torch.nn.ReLU(),
|
147 |
+
bias: bool = True,
|
148 |
+
norm: Optional[str] = "layer", # Options: ada/batch/layer
|
149 |
+
dropout: float = 0.0,
|
150 |
+
num_blocks: int = 1,
|
151 |
+
norm_cond_dim: int = -1,
|
152 |
+
):
|
153 |
+
super().__init__()
|
154 |
+
self.input_dim = input_dim
|
155 |
+
self.model = SequentialCond(
|
156 |
+
linear_norm_activ_dropout(
|
157 |
+
input_dim, hidden_dim, activation, bias, norm, dropout, norm_cond_dim
|
158 |
+
),
|
159 |
+
*[
|
160 |
+
ResidualMLPBlock(
|
161 |
+
hidden_dim,
|
162 |
+
hidden_dim,
|
163 |
+
num_hidden_layers,
|
164 |
+
hidden_dim,
|
165 |
+
activation,
|
166 |
+
bias,
|
167 |
+
norm,
|
168 |
+
dropout,
|
169 |
+
norm_cond_dim,
|
170 |
+
)
|
171 |
+
for _ in range(num_blocks)
|
172 |
+
],
|
173 |
+
torch.nn.Linear(hidden_dim, output_dim, bias=bias),
|
174 |
+
)
|
175 |
+
|
176 |
+
def forward(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor:
|
177 |
+
return self.model(x, *args, **kwargs)
|
178 |
+
|
179 |
+
|
180 |
+
class FrequencyEmbedder(torch.nn.Module):
|
181 |
+
def __init__(self, num_frequencies, max_freq_log2):
|
182 |
+
super().__init__()
|
183 |
+
frequencies = 2 ** torch.linspace(0, max_freq_log2, steps=num_frequencies)
|
184 |
+
self.register_buffer("frequencies", frequencies)
|
185 |
+
|
186 |
+
def forward(self, x):
|
187 |
+
# x should be of size (N,) or (N, D)
|
188 |
+
N = x.size(0)
|
189 |
+
if x.dim() == 1: # (N,)
|
190 |
+
x = x.unsqueeze(1) # (N, D) where D=1
|
191 |
+
x_unsqueezed = x.unsqueeze(-1) # (N, D, 1)
|
192 |
+
scaled = self.frequencies.view(1, 1, -1) * x_unsqueezed # (N, D, num_frequencies)
|
193 |
+
s = torch.sin(scaled)
|
194 |
+
c = torch.cos(scaled)
|
195 |
+
embedded = torch.cat([s, c, x_unsqueezed], dim=-1).view(
|
196 |
+
N, -1
|
197 |
+
) # (N, D * 2 * num_frequencies + D)
|
198 |
+
return embedded
|
199 |
+
|
hmr2/models/discriminator.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
class Discriminator(nn.Module):
|
5 |
+
|
6 |
+
def __init__(self):
|
7 |
+
"""
|
8 |
+
Pose + Shape discriminator proposed in HMR
|
9 |
+
"""
|
10 |
+
super(Discriminator, self).__init__()
|
11 |
+
|
12 |
+
self.num_joints = 23
|
13 |
+
# poses_alone
|
14 |
+
self.D_conv1 = nn.Conv2d(9, 32, kernel_size=1)
|
15 |
+
nn.init.xavier_uniform_(self.D_conv1.weight)
|
16 |
+
nn.init.zeros_(self.D_conv1.bias)
|
17 |
+
self.relu = nn.ReLU(inplace=True)
|
18 |
+
self.D_conv2 = nn.Conv2d(32, 32, kernel_size=1)
|
19 |
+
nn.init.xavier_uniform_(self.D_conv2.weight)
|
20 |
+
nn.init.zeros_(self.D_conv2.bias)
|
21 |
+
pose_out = []
|
22 |
+
for i in range(self.num_joints):
|
23 |
+
pose_out_temp = nn.Linear(32, 1)
|
24 |
+
nn.init.xavier_uniform_(pose_out_temp.weight)
|
25 |
+
nn.init.zeros_(pose_out_temp.bias)
|
26 |
+
pose_out.append(pose_out_temp)
|
27 |
+
self.pose_out = nn.ModuleList(pose_out)
|
28 |
+
|
29 |
+
# betas
|
30 |
+
self.betas_fc1 = nn.Linear(10, 10)
|
31 |
+
nn.init.xavier_uniform_(self.betas_fc1.weight)
|
32 |
+
nn.init.zeros_(self.betas_fc1.bias)
|
33 |
+
self.betas_fc2 = nn.Linear(10, 5)
|
34 |
+
nn.init.xavier_uniform_(self.betas_fc2.weight)
|
35 |
+
nn.init.zeros_(self.betas_fc2.bias)
|
36 |
+
self.betas_out = nn.Linear(5, 1)
|
37 |
+
nn.init.xavier_uniform_(self.betas_out.weight)
|
38 |
+
nn.init.zeros_(self.betas_out.bias)
|
39 |
+
|
40 |
+
# poses_joint
|
41 |
+
self.D_alljoints_fc1 = nn.Linear(32*self.num_joints, 1024)
|
42 |
+
nn.init.xavier_uniform_(self.D_alljoints_fc1.weight)
|
43 |
+
nn.init.zeros_(self.D_alljoints_fc1.bias)
|
44 |
+
self.D_alljoints_fc2 = nn.Linear(1024, 1024)
|
45 |
+
nn.init.xavier_uniform_(self.D_alljoints_fc2.weight)
|
46 |
+
nn.init.zeros_(self.D_alljoints_fc2.bias)
|
47 |
+
self.D_alljoints_out = nn.Linear(1024, 1)
|
48 |
+
nn.init.xavier_uniform_(self.D_alljoints_out.weight)
|
49 |
+
nn.init.zeros_(self.D_alljoints_out.bias)
|
50 |
+
|
51 |
+
|
52 |
+
def forward(self, poses: torch.Tensor, betas: torch.Tensor) -> torch.Tensor:
|
53 |
+
"""
|
54 |
+
Forward pass of the discriminator.
|
55 |
+
Args:
|
56 |
+
poses (torch.Tensor): Tensor of shape (B, 23, 3, 3) containing a batch of SMPL body poses (excluding the global orientation).
|
57 |
+
betas (torch.Tensor): Tensor of shape (B, 10) containign a batch of SMPL beta coefficients.
|
58 |
+
Returns:
|
59 |
+
torch.Tensor: Discriminator output with shape (B, 25)
|
60 |
+
"""
|
61 |
+
#import ipdb; ipdb.set_trace()
|
62 |
+
#bn = poses.shape[0]
|
63 |
+
# poses B x 207
|
64 |
+
#poses = poses.reshape(bn, -1)
|
65 |
+
# poses B x num_joints x 1 x 9
|
66 |
+
poses = poses.reshape(-1, self.num_joints, 1, 9)
|
67 |
+
bn = poses.shape[0]
|
68 |
+
# poses B x 9 x num_joints x 1
|
69 |
+
poses = poses.permute(0, 3, 1, 2).contiguous()
|
70 |
+
|
71 |
+
# poses_alone
|
72 |
+
poses = self.D_conv1(poses)
|
73 |
+
poses = self.relu(poses)
|
74 |
+
poses = self.D_conv2(poses)
|
75 |
+
poses = self.relu(poses)
|
76 |
+
|
77 |
+
poses_out = []
|
78 |
+
for i in range(self.num_joints):
|
79 |
+
poses_out_ = self.pose_out[i](poses[:, :, i, 0])
|
80 |
+
poses_out.append(poses_out_)
|
81 |
+
poses_out = torch.cat(poses_out, dim=1)
|
82 |
+
|
83 |
+
# betas
|
84 |
+
betas = self.betas_fc1(betas)
|
85 |
+
betas = self.relu(betas)
|
86 |
+
betas = self.betas_fc2(betas)
|
87 |
+
betas = self.relu(betas)
|
88 |
+
betas_out = self.betas_out(betas)
|
89 |
+
|
90 |
+
# poses_joint
|
91 |
+
poses = poses.reshape(bn,-1)
|
92 |
+
poses_all = self.D_alljoints_fc1(poses)
|
93 |
+
poses_all = self.relu(poses_all)
|
94 |
+
poses_all = self.D_alljoints_fc2(poses_all)
|
95 |
+
poses_all = self.relu(poses_all)
|
96 |
+
poses_all_out = self.D_alljoints_out(poses_all)
|
97 |
+
|
98 |
+
disc_out = torch.cat((poses_out, betas_out, poses_all_out), 1)
|
99 |
+
return disc_out
|
hmr2/models/heads/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .smpl_head import build_smpl_head
|
hmr2/models/heads/smpl_head.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import numpy as np
|
5 |
+
import einops
|
6 |
+
|
7 |
+
from ...utils.geometry import rot6d_to_rotmat, aa_to_rotmat
|
8 |
+
from ..components.pose_transformer import TransformerDecoder
|
9 |
+
|
10 |
+
def build_smpl_head(cfg):
|
11 |
+
smpl_head_type = cfg.MODEL.SMPL_HEAD.get('TYPE', 'hmr')
|
12 |
+
if smpl_head_type == 'transformer_decoder':
|
13 |
+
return SMPLTransformerDecoderHead(cfg)
|
14 |
+
else:
|
15 |
+
raise ValueError('Unknown SMPL head type: {}'.format(smpl_head_type))
|
16 |
+
|
17 |
+
class SMPLTransformerDecoderHead(nn.Module):
|
18 |
+
""" Cross-attention based SMPL Transformer decoder
|
19 |
+
"""
|
20 |
+
|
21 |
+
def __init__(self, cfg):
|
22 |
+
super().__init__()
|
23 |
+
self.cfg = cfg
|
24 |
+
self.joint_rep_type = cfg.MODEL.SMPL_HEAD.get('JOINT_REP', '6d')
|
25 |
+
self.joint_rep_dim = {'6d': 6, 'aa': 3}[self.joint_rep_type]
|
26 |
+
npose = self.joint_rep_dim * (cfg.SMPL.NUM_BODY_JOINTS + 1)
|
27 |
+
self.npose = npose
|
28 |
+
self.input_is_mean_shape = cfg.MODEL.SMPL_HEAD.get('TRANSFORMER_INPUT', 'zero') == 'mean_shape'
|
29 |
+
transformer_args = dict(
|
30 |
+
num_tokens=1,
|
31 |
+
token_dim=(npose + 10 + 3) if self.input_is_mean_shape else 1,
|
32 |
+
dim=1024,
|
33 |
+
)
|
34 |
+
transformer_args = (transformer_args | dict(cfg.MODEL.SMPL_HEAD.TRANSFORMER_DECODER))
|
35 |
+
self.transformer = TransformerDecoder(
|
36 |
+
**transformer_args
|
37 |
+
)
|
38 |
+
dim=transformer_args['dim']
|
39 |
+
self.decpose = nn.Linear(dim, npose)
|
40 |
+
self.decshape = nn.Linear(dim, 10)
|
41 |
+
self.deccam = nn.Linear(dim, 3)
|
42 |
+
|
43 |
+
if cfg.MODEL.SMPL_HEAD.get('INIT_DECODER_XAVIER', False):
|
44 |
+
# True by default in MLP. False by default in Transformer
|
45 |
+
nn.init.xavier_uniform_(self.decpose.weight, gain=0.01)
|
46 |
+
nn.init.xavier_uniform_(self.decshape.weight, gain=0.01)
|
47 |
+
nn.init.xavier_uniform_(self.deccam.weight, gain=0.01)
|
48 |
+
|
49 |
+
mean_params = np.load(cfg.SMPL.MEAN_PARAMS)
|
50 |
+
init_body_pose = torch.from_numpy(mean_params['pose'].astype(np.float32)).unsqueeze(0)
|
51 |
+
init_betas = torch.from_numpy(mean_params['shape'].astype('float32')).unsqueeze(0)
|
52 |
+
init_cam = torch.from_numpy(mean_params['cam'].astype(np.float32)).unsqueeze(0)
|
53 |
+
self.register_buffer('init_body_pose', init_body_pose)
|
54 |
+
self.register_buffer('init_betas', init_betas)
|
55 |
+
self.register_buffer('init_cam', init_cam)
|
56 |
+
|
57 |
+
def forward(self, x, **kwargs):
|
58 |
+
|
59 |
+
batch_size = x.shape[0]
|
60 |
+
# vit pretrained backbone is channel-first. Change to token-first
|
61 |
+
x = einops.rearrange(x, 'b c h w -> b (h w) c')
|
62 |
+
|
63 |
+
init_body_pose = self.init_body_pose.expand(batch_size, -1)
|
64 |
+
init_betas = self.init_betas.expand(batch_size, -1)
|
65 |
+
init_cam = self.init_cam.expand(batch_size, -1)
|
66 |
+
|
67 |
+
# TODO: Convert init_body_pose to aa rep if needed
|
68 |
+
if self.joint_rep_type == 'aa':
|
69 |
+
raise NotImplementedError
|
70 |
+
|
71 |
+
pred_body_pose = init_body_pose
|
72 |
+
pred_betas = init_betas
|
73 |
+
pred_cam = init_cam
|
74 |
+
pred_body_pose_list = []
|
75 |
+
pred_betas_list = []
|
76 |
+
pred_cam_list = []
|
77 |
+
for i in range(self.cfg.MODEL.SMPL_HEAD.get('IEF_ITERS', 1)):
|
78 |
+
# Input token to transformer is zero token
|
79 |
+
if self.input_is_mean_shape:
|
80 |
+
token = torch.cat([pred_body_pose, pred_betas, pred_cam], dim=1)[:,None,:]
|
81 |
+
else:
|
82 |
+
token = torch.zeros(batch_size, 1, 1).to(x.device)
|
83 |
+
|
84 |
+
# Pass through transformer
|
85 |
+
token_out = self.transformer(token, context=x)
|
86 |
+
token_out = token_out.squeeze(1) # (B, C)
|
87 |
+
|
88 |
+
# Readout from token_out
|
89 |
+
pred_body_pose = self.decpose(token_out) + pred_body_pose
|
90 |
+
pred_betas = self.decshape(token_out) + pred_betas
|
91 |
+
pred_cam = self.deccam(token_out) + pred_cam
|
92 |
+
pred_body_pose_list.append(pred_body_pose)
|
93 |
+
pred_betas_list.append(pred_betas)
|
94 |
+
pred_cam_list.append(pred_cam)
|
95 |
+
|
96 |
+
# Convert self.joint_rep_type -> rotmat
|
97 |
+
joint_conversion_fn = {
|
98 |
+
'6d': rot6d_to_rotmat,
|
99 |
+
'aa': lambda x: aa_to_rotmat(x.view(-1, 3).contiguous())
|
100 |
+
}[self.joint_rep_type]
|
101 |
+
|
102 |
+
pred_smpl_params_list = {}
|
103 |
+
pred_smpl_params_list['body_pose'] = torch.cat([joint_conversion_fn(pbp).view(batch_size, -1, 3, 3)[:, 1:, :, :] for pbp in pred_body_pose_list], dim=0)
|
104 |
+
pred_smpl_params_list['betas'] = torch.cat(pred_betas_list, dim=0)
|
105 |
+
pred_smpl_params_list['cam'] = torch.cat(pred_cam_list, dim=0)
|
106 |
+
pred_body_pose = joint_conversion_fn(pred_body_pose).view(batch_size, self.cfg.SMPL.NUM_BODY_JOINTS+1, 3, 3)
|
107 |
+
|
108 |
+
pred_smpl_params = {'global_orient': pred_body_pose[:, [0]],
|
109 |
+
'body_pose': pred_body_pose[:, 1:],
|
110 |
+
'betas': pred_betas}
|
111 |
+
return pred_smpl_params, pred_cam, pred_smpl_params_list
|
hmr2/models/hmr2.py
ADDED
@@ -0,0 +1,363 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import pytorch_lightning as pl
|
3 |
+
from typing import Any, Dict, Mapping, Tuple
|
4 |
+
|
5 |
+
from yacs.config import CfgNode
|
6 |
+
|
7 |
+
from ..utils import SkeletonRenderer, MeshRenderer
|
8 |
+
from ..utils.geometry import aa_to_rotmat, perspective_projection
|
9 |
+
from .backbones import create_backbone
|
10 |
+
from .heads import build_smpl_head
|
11 |
+
from .discriminator import Discriminator
|
12 |
+
from .losses import Keypoint3DLoss, Keypoint2DLoss, ParameterLoss
|
13 |
+
from . import SMPL
|
14 |
+
|
15 |
+
|
16 |
+
class HMR2(pl.LightningModule):
|
17 |
+
|
18 |
+
def __init__(self, cfg: CfgNode, init_renderer: bool = True):
|
19 |
+
"""
|
20 |
+
Setup HMR2 model
|
21 |
+
Args:
|
22 |
+
cfg (CfgNode): Config file as a yacs CfgNode
|
23 |
+
"""
|
24 |
+
super().__init__()
|
25 |
+
|
26 |
+
# Save hyperparameters
|
27 |
+
self.save_hyperparameters(logger=False, ignore=['init_renderer'])
|
28 |
+
|
29 |
+
self.cfg = cfg
|
30 |
+
# Create backbone feature extractor
|
31 |
+
self.backbone = create_backbone(cfg)
|
32 |
+
|
33 |
+
# Create SMPL head
|
34 |
+
self.smpl_head = build_smpl_head(cfg)
|
35 |
+
|
36 |
+
# Create discriminator
|
37 |
+
if self.cfg.LOSS_WEIGHTS.ADVERSARIAL > 0:
|
38 |
+
self.discriminator = Discriminator()
|
39 |
+
|
40 |
+
# Define loss functions
|
41 |
+
self.keypoint_3d_loss = Keypoint3DLoss(loss_type='l1')
|
42 |
+
self.keypoint_2d_loss = Keypoint2DLoss(loss_type='l1')
|
43 |
+
self.smpl_parameter_loss = ParameterLoss()
|
44 |
+
|
45 |
+
# Instantiate SMPL model
|
46 |
+
smpl_cfg = {k.lower(): v for k,v in dict(cfg.SMPL).items()}
|
47 |
+
self.smpl = SMPL(**smpl_cfg)
|
48 |
+
|
49 |
+
# Buffer that shows whetheer we need to initialize ActNorm layers
|
50 |
+
self.register_buffer('initialized', torch.tensor(False))
|
51 |
+
# Setup renderer for visualization
|
52 |
+
if init_renderer:
|
53 |
+
self.renderer = SkeletonRenderer(self.cfg)
|
54 |
+
self.mesh_renderer = MeshRenderer(self.cfg, faces=self.smpl.faces)
|
55 |
+
else:
|
56 |
+
self.renderer = None
|
57 |
+
self.mesh_renderer = None
|
58 |
+
|
59 |
+
# Disable automatic optimization since we use adversarial training
|
60 |
+
self.automatic_optimization = False
|
61 |
+
|
62 |
+
def get_parameters(self):
|
63 |
+
all_params = list(self.smpl_head.parameters())
|
64 |
+
all_params += list(self.backbone.parameters())
|
65 |
+
return all_params
|
66 |
+
|
67 |
+
def configure_optimizers(self) -> Tuple[torch.optim.Optimizer, torch.optim.Optimizer]:
|
68 |
+
"""
|
69 |
+
Setup model and distriminator Optimizers
|
70 |
+
Returns:
|
71 |
+
Tuple[torch.optim.Optimizer, torch.optim.Optimizer]: Model and discriminator optimizers
|
72 |
+
"""
|
73 |
+
param_groups = [{'params': filter(lambda p: p.requires_grad, self.get_parameters()), 'lr': self.cfg.TRAIN.LR}]
|
74 |
+
|
75 |
+
optimizer = torch.optim.AdamW(params=param_groups,
|
76 |
+
# lr=self.cfg.TRAIN.LR,
|
77 |
+
weight_decay=self.cfg.TRAIN.WEIGHT_DECAY)
|
78 |
+
optimizer_disc = torch.optim.AdamW(params=self.discriminator.parameters(),
|
79 |
+
lr=self.cfg.TRAIN.LR,
|
80 |
+
weight_decay=self.cfg.TRAIN.WEIGHT_DECAY)
|
81 |
+
|
82 |
+
return optimizer, optimizer_disc
|
83 |
+
|
84 |
+
def forward_step(self, batch: Dict, train: bool = False) -> Dict:
|
85 |
+
"""
|
86 |
+
Run a forward step of the network
|
87 |
+
Args:
|
88 |
+
batch (Dict): Dictionary containing batch data
|
89 |
+
train (bool): Flag indicating whether it is training or validation mode
|
90 |
+
Returns:
|
91 |
+
Dict: Dictionary containing the regression output
|
92 |
+
"""
|
93 |
+
|
94 |
+
# Use RGB image as input
|
95 |
+
x = batch['img']
|
96 |
+
batch_size = x.shape[0]
|
97 |
+
|
98 |
+
# Compute conditioning features using the backbone
|
99 |
+
# if using ViT backbone, we need to use a different aspect ratio
|
100 |
+
conditioning_feats = self.backbone(x[:,:,:,32:-32])
|
101 |
+
|
102 |
+
pred_smpl_params, pred_cam, _ = self.smpl_head(conditioning_feats)
|
103 |
+
|
104 |
+
# Store useful regression outputs to the output dict
|
105 |
+
output = {}
|
106 |
+
output['pred_cam'] = pred_cam
|
107 |
+
output['pred_smpl_params'] = {k: v.clone() for k,v in pred_smpl_params.items()}
|
108 |
+
|
109 |
+
# Compute camera translation
|
110 |
+
device = pred_smpl_params['body_pose'].device
|
111 |
+
dtype = pred_smpl_params['body_pose'].dtype
|
112 |
+
focal_length = self.cfg.EXTRA.FOCAL_LENGTH * torch.ones(batch_size, 2, device=device, dtype=dtype)
|
113 |
+
pred_cam_t = torch.stack([pred_cam[:, 1],
|
114 |
+
pred_cam[:, 2],
|
115 |
+
2*focal_length[:, 0]/(self.cfg.MODEL.IMAGE_SIZE * pred_cam[:, 0] +1e-9)],dim=-1)
|
116 |
+
output['pred_cam_t'] = pred_cam_t
|
117 |
+
output['focal_length'] = focal_length
|
118 |
+
|
119 |
+
# Compute model vertices, joints and the projected joints
|
120 |
+
pred_smpl_params['global_orient'] = pred_smpl_params['global_orient'].reshape(batch_size, -1, 3, 3)
|
121 |
+
pred_smpl_params['body_pose'] = pred_smpl_params['body_pose'].reshape(batch_size, -1, 3, 3)
|
122 |
+
pred_smpl_params['betas'] = pred_smpl_params['betas'].reshape(batch_size, -1)
|
123 |
+
smpl_output = self.smpl(**{k: v.float() for k,v in pred_smpl_params.items()}, pose2rot=False)
|
124 |
+
pred_keypoints_3d = smpl_output.joints
|
125 |
+
pred_vertices = smpl_output.vertices
|
126 |
+
output['pred_keypoints_3d'] = pred_keypoints_3d.reshape(batch_size, -1, 3)
|
127 |
+
output['pred_vertices'] = pred_vertices.reshape(batch_size, -1, 3)
|
128 |
+
pred_cam_t = pred_cam_t.reshape(-1, 3)
|
129 |
+
focal_length = focal_length.reshape(-1, 2)
|
130 |
+
pred_keypoints_2d = perspective_projection(pred_keypoints_3d,
|
131 |
+
translation=pred_cam_t,
|
132 |
+
focal_length=focal_length / self.cfg.MODEL.IMAGE_SIZE)
|
133 |
+
|
134 |
+
output['pred_keypoints_2d'] = pred_keypoints_2d.reshape(batch_size, -1, 2)
|
135 |
+
return output
|
136 |
+
|
137 |
+
def compute_loss(self, batch: Dict, output: Dict, train: bool = True) -> torch.Tensor:
|
138 |
+
"""
|
139 |
+
Compute losses given the input batch and the regression output
|
140 |
+
Args:
|
141 |
+
batch (Dict): Dictionary containing batch data
|
142 |
+
output (Dict): Dictionary containing the regression output
|
143 |
+
train (bool): Flag indicating whether it is training or validation mode
|
144 |
+
Returns:
|
145 |
+
torch.Tensor : Total loss for current batch
|
146 |
+
"""
|
147 |
+
|
148 |
+
pred_smpl_params = output['pred_smpl_params']
|
149 |
+
pred_keypoints_2d = output['pred_keypoints_2d']
|
150 |
+
pred_keypoints_3d = output['pred_keypoints_3d']
|
151 |
+
|
152 |
+
|
153 |
+
batch_size = pred_smpl_params['body_pose'].shape[0]
|
154 |
+
device = pred_smpl_params['body_pose'].device
|
155 |
+
dtype = pred_smpl_params['body_pose'].dtype
|
156 |
+
|
157 |
+
# Get annotations
|
158 |
+
gt_keypoints_2d = batch['keypoints_2d']
|
159 |
+
gt_keypoints_3d = batch['keypoints_3d']
|
160 |
+
gt_smpl_params = batch['smpl_params']
|
161 |
+
has_smpl_params = batch['has_smpl_params']
|
162 |
+
is_axis_angle = batch['smpl_params_is_axis_angle']
|
163 |
+
|
164 |
+
# Compute 3D keypoint loss
|
165 |
+
loss_keypoints_2d = self.keypoint_2d_loss(pred_keypoints_2d, gt_keypoints_2d)
|
166 |
+
loss_keypoints_3d = self.keypoint_3d_loss(pred_keypoints_3d, gt_keypoints_3d, pelvis_id=25+14)
|
167 |
+
|
168 |
+
# Compute loss on SMPL parameters
|
169 |
+
loss_smpl_params = {}
|
170 |
+
for k, pred in pred_smpl_params.items():
|
171 |
+
gt = gt_smpl_params[k].view(batch_size, -1)
|
172 |
+
if is_axis_angle[k].all():
|
173 |
+
gt = aa_to_rotmat(gt.reshape(-1, 3)).view(batch_size, -1, 3, 3)
|
174 |
+
has_gt = has_smpl_params[k]
|
175 |
+
loss_smpl_params[k] = self.smpl_parameter_loss(pred.reshape(batch_size, -1), gt.reshape(batch_size, -1), has_gt)
|
176 |
+
|
177 |
+
# # Filter out images with corresponding SMPL parameter annotations
|
178 |
+
# smpl_params = {k: v.clone() for k,v in gt_smpl_params.items()}
|
179 |
+
# smpl_params['body_pose'] = aa_to_rotmat(smpl_params['body_pose'].reshape(-1, 3)).reshape(batch_size, -1, 3, 3)[:, :, :, :2].permute(0, 1, 3, 2).reshape(batch_size, -1)
|
180 |
+
# smpl_params['global_orient'] = aa_to_rotmat(smpl_params['global_orient'].reshape(-1, 3)).reshape(batch_size, -1, 3, 3)[:, :, :, :2].permute(0, 1, 3, 2).reshape(batch_size, -1)
|
181 |
+
# smpl_params['betas'] = smpl_params['betas']
|
182 |
+
# has_smpl_params = (batch['has_smpl_params']['body_pose'] > 0)
|
183 |
+
# smpl_params = {k: v[has_smpl_params] for k, v in smpl_params.items()}
|
184 |
+
|
185 |
+
loss = self.cfg.LOSS_WEIGHTS['KEYPOINTS_3D'] * loss_keypoints_3d+\
|
186 |
+
self.cfg.LOSS_WEIGHTS['KEYPOINTS_2D'] * loss_keypoints_2d+\
|
187 |
+
sum([loss_smpl_params[k] * self.cfg.LOSS_WEIGHTS[k.upper()] for k in loss_smpl_params])
|
188 |
+
|
189 |
+
losses = dict(loss=loss.detach(),
|
190 |
+
loss_keypoints_2d=loss_keypoints_2d.detach(),
|
191 |
+
loss_keypoints_3d=loss_keypoints_3d.detach())
|
192 |
+
|
193 |
+
for k, v in loss_smpl_params.items():
|
194 |
+
losses['loss_' + k] = v.detach()
|
195 |
+
|
196 |
+
output['losses'] = losses
|
197 |
+
|
198 |
+
return loss
|
199 |
+
|
200 |
+
# Tensoroboard logging should run from first rank only
|
201 |
+
@pl.utilities.rank_zero.rank_zero_only
|
202 |
+
def tensorboard_logging(self, batch: Dict, output: Dict, step_count: int, train: bool = True, write_to_summary_writer: bool = True) -> None:
|
203 |
+
"""
|
204 |
+
Log results to Tensorboard
|
205 |
+
Args:
|
206 |
+
batch (Dict): Dictionary containing batch data
|
207 |
+
output (Dict): Dictionary containing the regression output
|
208 |
+
step_count (int): Global training step count
|
209 |
+
train (bool): Flag indicating whether it is training or validation mode
|
210 |
+
"""
|
211 |
+
|
212 |
+
mode = 'train' if train else 'val'
|
213 |
+
batch_size = batch['keypoints_2d'].shape[0]
|
214 |
+
images = batch['img']
|
215 |
+
images = images * torch.tensor([0.229, 0.224, 0.225], device=images.device).reshape(1,3,1,1)
|
216 |
+
images = images + torch.tensor([0.485, 0.456, 0.406], device=images.device).reshape(1,3,1,1)
|
217 |
+
#images = 255*images.permute(0, 2, 3, 1).cpu().numpy()
|
218 |
+
|
219 |
+
pred_keypoints_3d = output['pred_keypoints_3d'].detach().reshape(batch_size, -1, 3)
|
220 |
+
pred_vertices = output['pred_vertices'].detach().reshape(batch_size, -1, 3)
|
221 |
+
focal_length = output['focal_length'].detach().reshape(batch_size, 2)
|
222 |
+
gt_keypoints_3d = batch['keypoints_3d']
|
223 |
+
gt_keypoints_2d = batch['keypoints_2d']
|
224 |
+
losses = output['losses']
|
225 |
+
pred_cam_t = output['pred_cam_t'].detach().reshape(batch_size, 3)
|
226 |
+
pred_keypoints_2d = output['pred_keypoints_2d'].detach().reshape(batch_size, -1, 2)
|
227 |
+
|
228 |
+
if write_to_summary_writer:
|
229 |
+
summary_writer = self.logger.experiment
|
230 |
+
for loss_name, val in losses.items():
|
231 |
+
summary_writer.add_scalar(mode +'/' + loss_name, val.detach().item(), step_count)
|
232 |
+
num_images = min(batch_size, self.cfg.EXTRA.NUM_LOG_IMAGES)
|
233 |
+
|
234 |
+
gt_keypoints_3d = batch['keypoints_3d']
|
235 |
+
pred_keypoints_3d = output['pred_keypoints_3d'].detach().reshape(batch_size, -1, 3)
|
236 |
+
|
237 |
+
# We render the skeletons instead of the full mesh because rendering a lot of meshes will make the training slow.
|
238 |
+
#predictions = self.renderer(pred_keypoints_3d[:num_images],
|
239 |
+
# gt_keypoints_3d[:num_images],
|
240 |
+
# 2 * gt_keypoints_2d[:num_images],
|
241 |
+
# images=images[:num_images],
|
242 |
+
# camera_translation=pred_cam_t[:num_images])
|
243 |
+
predictions = self.mesh_renderer.visualize_tensorboard(pred_vertices[:num_images].cpu().numpy(),
|
244 |
+
pred_cam_t[:num_images].cpu().numpy(),
|
245 |
+
images[:num_images].cpu().numpy(),
|
246 |
+
pred_keypoints_2d[:num_images].cpu().numpy(),
|
247 |
+
gt_keypoints_2d[:num_images].cpu().numpy(),
|
248 |
+
focal_length=focal_length[:num_images].cpu().numpy())
|
249 |
+
if write_to_summary_writer:
|
250 |
+
summary_writer.add_image('%s/predictions' % mode, predictions, step_count)
|
251 |
+
|
252 |
+
return predictions
|
253 |
+
|
254 |
+
def forward(self, batch: Dict) -> Dict:
|
255 |
+
"""
|
256 |
+
Run a forward step of the network in val mode
|
257 |
+
Args:
|
258 |
+
batch (Dict): Dictionary containing batch data
|
259 |
+
Returns:
|
260 |
+
Dict: Dictionary containing the regression output
|
261 |
+
"""
|
262 |
+
return self.forward_step(batch, train=False)
|
263 |
+
|
264 |
+
def training_step_discriminator(self, batch: Dict,
|
265 |
+
body_pose: torch.Tensor,
|
266 |
+
betas: torch.Tensor,
|
267 |
+
optimizer: torch.optim.Optimizer) -> torch.Tensor:
|
268 |
+
"""
|
269 |
+
Run a discriminator training step
|
270 |
+
Args:
|
271 |
+
batch (Dict): Dictionary containing mocap batch data
|
272 |
+
body_pose (torch.Tensor): Regressed body pose from current step
|
273 |
+
betas (torch.Tensor): Regressed betas from current step
|
274 |
+
optimizer (torch.optim.Optimizer): Discriminator optimizer
|
275 |
+
Returns:
|
276 |
+
torch.Tensor: Discriminator loss
|
277 |
+
"""
|
278 |
+
batch_size = body_pose.shape[0]
|
279 |
+
gt_body_pose = batch['body_pose']
|
280 |
+
gt_betas = batch['betas']
|
281 |
+
gt_rotmat = aa_to_rotmat(gt_body_pose.view(-1,3)).view(batch_size, -1, 3, 3)
|
282 |
+
disc_fake_out = self.discriminator(body_pose.detach(), betas.detach())
|
283 |
+
loss_fake = ((disc_fake_out - 0.0) ** 2).sum() / batch_size
|
284 |
+
disc_real_out = self.discriminator(gt_rotmat, gt_betas)
|
285 |
+
loss_real = ((disc_real_out - 1.0) ** 2).sum() / batch_size
|
286 |
+
loss_disc = loss_fake + loss_real
|
287 |
+
loss = self.cfg.LOSS_WEIGHTS.ADVERSARIAL * loss_disc
|
288 |
+
optimizer.zero_grad()
|
289 |
+
self.manual_backward(loss)
|
290 |
+
optimizer.step()
|
291 |
+
return loss_disc.detach()
|
292 |
+
|
293 |
+
def training_step(self, joint_batch: Dict, batch_idx: int) -> Dict:
|
294 |
+
"""
|
295 |
+
Run a full training step
|
296 |
+
Args:
|
297 |
+
joint_batch (Dict): Dictionary containing image and mocap batch data
|
298 |
+
batch_idx (int): Unused.
|
299 |
+
batch_idx (torch.Tensor): Unused.
|
300 |
+
Returns:
|
301 |
+
Dict: Dictionary containing regression output.
|
302 |
+
"""
|
303 |
+
batch = joint_batch['img']
|
304 |
+
mocap_batch = joint_batch['mocap']
|
305 |
+
optimizer = self.optimizers(use_pl_optimizer=True)
|
306 |
+
if self.cfg.LOSS_WEIGHTS.ADVERSARIAL > 0:
|
307 |
+
optimizer, optimizer_disc = optimizer
|
308 |
+
|
309 |
+
# Update learning rates
|
310 |
+
self.update_learning_rates(batch_idx)
|
311 |
+
|
312 |
+
batch_size = batch['img'].shape[0]
|
313 |
+
output = self.forward_step(batch, train=True)
|
314 |
+
pred_smpl_params = output['pred_smpl_params']
|
315 |
+
if self.cfg.get('UPDATE_GT_SPIN', False):
|
316 |
+
self.update_batch_gt_spin(batch, output)
|
317 |
+
loss = self.compute_loss(batch, output, train=True)
|
318 |
+
if self.cfg.LOSS_WEIGHTS.ADVERSARIAL > 0:
|
319 |
+
disc_out = self.discriminator(pred_smpl_params['body_pose'].reshape(batch_size, -1), pred_smpl_params['betas'].reshape(batch_size, -1))
|
320 |
+
loss_adv = ((disc_out - 1.0) ** 2).sum() / batch_size
|
321 |
+
loss = loss + self.cfg.LOSS_WEIGHTS.ADVERSARIAL * loss_adv
|
322 |
+
|
323 |
+
# Error if Nan
|
324 |
+
if torch.isnan(loss):
|
325 |
+
raise ValueError('Loss is NaN')
|
326 |
+
|
327 |
+
optimizer.zero_grad()
|
328 |
+
self.manual_backward(loss)
|
329 |
+
# Clip gradient
|
330 |
+
if self.cfg.TRAIN.get('GRAD_CLIP_VAL', 0) > 0:
|
331 |
+
gn = torch.nn.utils.clip_grad_norm_(self.get_parameters(), self.cfg.TRAIN.GRAD_CLIP_VAL, error_if_nonfinite=True)
|
332 |
+
self.log('train/grad_norm', gn, on_step=True, on_epoch=True, prog_bar=True, logger=True)
|
333 |
+
optimizer.step()
|
334 |
+
if self.cfg.LOSS_WEIGHTS.ADVERSARIAL > 0:
|
335 |
+
loss_disc = self.training_step_discriminator(mocap_batch, pred_smpl_params['body_pose'].reshape(batch_size, -1), pred_smpl_params['betas'].reshape(batch_size, -1), optimizer_disc)
|
336 |
+
output['losses']['loss_gen'] = loss_adv
|
337 |
+
output['losses']['loss_disc'] = loss_disc
|
338 |
+
|
339 |
+
if self.global_step > 0 and self.global_step % self.cfg.GENERAL.LOG_STEPS == 0:
|
340 |
+
self.tensorboard_logging(batch, output, self.global_step, train=True)
|
341 |
+
|
342 |
+
self.log('train/loss', output['losses']['loss'], on_step=True, on_epoch=True, prog_bar=True, logger=False)
|
343 |
+
|
344 |
+
return output
|
345 |
+
|
346 |
+
def validation_step(self, batch: Dict, batch_idx: int, dataloader_idx=0) -> Dict:
|
347 |
+
"""
|
348 |
+
Run a validation step and log to Tensorboard
|
349 |
+
Args:
|
350 |
+
batch (Dict): Dictionary containing batch data
|
351 |
+
batch_idx (int): Unused.
|
352 |
+
Returns:
|
353 |
+
Dict: Dictionary containing regression output.
|
354 |
+
"""
|
355 |
+
# batch_size = batch['img'].shape[0]
|
356 |
+
output = self.forward_step(batch, train=False)
|
357 |
+
|
358 |
+
pred_smpl_params = output['pred_smpl_params']
|
359 |
+
loss = self.compute_loss(batch, output, train=False)
|
360 |
+
output['loss'] = loss
|
361 |
+
self.tensorboard_logging(batch, output, self.global_step, train=False)
|
362 |
+
|
363 |
+
return output
|
hmr2/models/losses.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
class Keypoint2DLoss(nn.Module):
|
5 |
+
|
6 |
+
def __init__(self, loss_type: str = 'l1'):
|
7 |
+
"""
|
8 |
+
2D keypoint loss module.
|
9 |
+
Args:
|
10 |
+
loss_type (str): Choose between l1 and l2 losses.
|
11 |
+
"""
|
12 |
+
super(Keypoint2DLoss, self).__init__()
|
13 |
+
if loss_type == 'l1':
|
14 |
+
self.loss_fn = nn.L1Loss(reduction='none')
|
15 |
+
elif loss_type == 'l2':
|
16 |
+
self.loss_fn = nn.MSELoss(reduction='none')
|
17 |
+
else:
|
18 |
+
raise NotImplementedError('Unsupported loss function')
|
19 |
+
|
20 |
+
def forward(self, pred_keypoints_2d: torch.Tensor, gt_keypoints_2d: torch.Tensor) -> torch.Tensor:
|
21 |
+
"""
|
22 |
+
Compute 2D reprojection loss on the keypoints.
|
23 |
+
Args:
|
24 |
+
pred_keypoints_2d (torch.Tensor): Tensor of shape [B, S, N, 2] containing projected 2D keypoints (B: batch_size, S: num_samples, N: num_keypoints)
|
25 |
+
gt_keypoints_2d (torch.Tensor): Tensor of shape [B, S, N, 3] containing the ground truth 2D keypoints and confidence.
|
26 |
+
Returns:
|
27 |
+
torch.Tensor: 2D keypoint loss.
|
28 |
+
"""
|
29 |
+
conf = gt_keypoints_2d[:, :, -1].unsqueeze(-1).clone()
|
30 |
+
batch_size = conf.shape[0]
|
31 |
+
loss = (conf * self.loss_fn(pred_keypoints_2d, gt_keypoints_2d[:, :, :-1])).sum(dim=(1,2))
|
32 |
+
return loss.sum()
|
33 |
+
|
34 |
+
|
35 |
+
class Keypoint3DLoss(nn.Module):
|
36 |
+
|
37 |
+
def __init__(self, loss_type: str = 'l1'):
|
38 |
+
"""
|
39 |
+
3D keypoint loss module.
|
40 |
+
Args:
|
41 |
+
loss_type (str): Choose between l1 and l2 losses.
|
42 |
+
"""
|
43 |
+
super(Keypoint3DLoss, self).__init__()
|
44 |
+
if loss_type == 'l1':
|
45 |
+
self.loss_fn = nn.L1Loss(reduction='none')
|
46 |
+
elif loss_type == 'l2':
|
47 |
+
self.loss_fn = nn.MSELoss(reduction='none')
|
48 |
+
else:
|
49 |
+
raise NotImplementedError('Unsupported loss function')
|
50 |
+
|
51 |
+
def forward(self, pred_keypoints_3d: torch.Tensor, gt_keypoints_3d: torch.Tensor, pelvis_id: int = 39):
|
52 |
+
"""
|
53 |
+
Compute 3D keypoint loss.
|
54 |
+
Args:
|
55 |
+
pred_keypoints_3d (torch.Tensor): Tensor of shape [B, S, N, 3] containing the predicted 3D keypoints (B: batch_size, S: num_samples, N: num_keypoints)
|
56 |
+
gt_keypoints_3d (torch.Tensor): Tensor of shape [B, S, N, 4] containing the ground truth 3D keypoints and confidence.
|
57 |
+
Returns:
|
58 |
+
torch.Tensor: 3D keypoint loss.
|
59 |
+
"""
|
60 |
+
batch_size = pred_keypoints_3d.shape[0]
|
61 |
+
gt_keypoints_3d = gt_keypoints_3d.clone()
|
62 |
+
pred_keypoints_3d = pred_keypoints_3d - pred_keypoints_3d[:, pelvis_id, :].unsqueeze(dim=1)
|
63 |
+
gt_keypoints_3d[:, :, :-1] = gt_keypoints_3d[:, :, :-1] - gt_keypoints_3d[:, pelvis_id, :-1].unsqueeze(dim=1)
|
64 |
+
conf = gt_keypoints_3d[:, :, -1].unsqueeze(-1).clone()
|
65 |
+
gt_keypoints_3d = gt_keypoints_3d[:, :, :-1]
|
66 |
+
loss = (conf * self.loss_fn(pred_keypoints_3d, gt_keypoints_3d)).sum(dim=(1,2))
|
67 |
+
return loss.sum()
|
68 |
+
|
69 |
+
class ParameterLoss(nn.Module):
|
70 |
+
|
71 |
+
def __init__(self):
|
72 |
+
"""
|
73 |
+
SMPL parameter loss module.
|
74 |
+
"""
|
75 |
+
super(ParameterLoss, self).__init__()
|
76 |
+
self.loss_fn = nn.MSELoss(reduction='none')
|
77 |
+
|
78 |
+
def forward(self, pred_param: torch.Tensor, gt_param: torch.Tensor, has_param: torch.Tensor):
|
79 |
+
"""
|
80 |
+
Compute SMPL parameter loss.
|
81 |
+
Args:
|
82 |
+
pred_param (torch.Tensor): Tensor of shape [B, S, ...] containing the predicted parameters (body pose / global orientation / betas)
|
83 |
+
gt_param (torch.Tensor): Tensor of shape [B, S, ...] containing the ground truth SMPL parameters.
|
84 |
+
Returns:
|
85 |
+
torch.Tensor: L2 parameter loss loss.
|
86 |
+
"""
|
87 |
+
batch_size = pred_param.shape[0]
|
88 |
+
num_dims = len(pred_param.shape)
|
89 |
+
mask_dimension = [batch_size] + [1] * (num_dims-1)
|
90 |
+
has_param = has_param.type(pred_param.type()).view(*mask_dimension)
|
91 |
+
loss_param = (has_param * self.loss_fn(pred_param, gt_param))
|
92 |
+
return loss_param.sum()
|
hmr2/models/smpl_wrapper.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
import pickle
|
4 |
+
from typing import Optional
|
5 |
+
import smplx
|
6 |
+
from smplx.lbs import vertices2joints
|
7 |
+
from smplx.utils import SMPLOutput
|
8 |
+
|
9 |
+
|
10 |
+
class SMPL(smplx.SMPLLayer):
|
11 |
+
def __init__(self, *args, joint_regressor_extra: Optional[str] = None, update_hips: bool = False, **kwargs):
|
12 |
+
"""
|
13 |
+
Extension of the official SMPL implementation to support more joints.
|
14 |
+
Args:
|
15 |
+
Same as SMPLLayer.
|
16 |
+
joint_regressor_extra (str): Path to extra joint regressor.
|
17 |
+
"""
|
18 |
+
super(SMPL, self).__init__(*args, **kwargs)
|
19 |
+
smpl_to_openpose = [24, 12, 17, 19, 21, 16, 18, 20, 0, 2, 5, 8, 1, 4,
|
20 |
+
7, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34]
|
21 |
+
|
22 |
+
if joint_regressor_extra is not None:
|
23 |
+
self.register_buffer('joint_regressor_extra', torch.tensor(pickle.load(open(joint_regressor_extra, 'rb'), encoding='latin1'), dtype=torch.float32))
|
24 |
+
self.register_buffer('joint_map', torch.tensor(smpl_to_openpose, dtype=torch.long))
|
25 |
+
self.update_hips = update_hips
|
26 |
+
|
27 |
+
def forward(self, *args, **kwargs) -> SMPLOutput:
|
28 |
+
"""
|
29 |
+
Run forward pass. Same as SMPL and also append an extra set of joints if joint_regressor_extra is specified.
|
30 |
+
"""
|
31 |
+
smpl_output = super(SMPL, self).forward(*args, **kwargs)
|
32 |
+
joints = smpl_output.joints[:, self.joint_map, :]
|
33 |
+
if self.update_hips:
|
34 |
+
joints[:,[9,12]] = joints[:,[9,12]] + \
|
35 |
+
0.25*(joints[:,[9,12]]-joints[:,[12,9]]) + \
|
36 |
+
0.5*(joints[:,[8]] - 0.5*(joints[:,[9,12]] + joints[:,[12,9]]))
|
37 |
+
if hasattr(self, 'joint_regressor_extra'):
|
38 |
+
extra_joints = vertices2joints(self.joint_regressor_extra, smpl_output.vertices)
|
39 |
+
joints = torch.cat([joints, extra_joints], dim=1)
|
40 |
+
smpl_output.joints = joints
|
41 |
+
return smpl_output
|
hmr2/utils/__init__.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from typing import Any
|
3 |
+
|
4 |
+
from .renderer import Renderer
|
5 |
+
from .mesh_renderer import MeshRenderer
|
6 |
+
from .skeleton_renderer import SkeletonRenderer
|
7 |
+
from .pose_utils import eval_pose, Evaluator
|
8 |
+
|
9 |
+
def recursive_to(x: Any, target: torch.device):
|
10 |
+
"""
|
11 |
+
Recursively transfer a batch of data to the target device
|
12 |
+
Args:
|
13 |
+
x (Any): Batch of data.
|
14 |
+
target (torch.device): Target device.
|
15 |
+
Returns:
|
16 |
+
Batch of data where all tensors are transfered to the target device.
|
17 |
+
"""
|
18 |
+
if isinstance(x, dict):
|
19 |
+
return {k: recursive_to(v, target) for k, v in x.items()}
|
20 |
+
elif isinstance(x, torch.Tensor):
|
21 |
+
return x.to(target)
|
22 |
+
elif isinstance(x, list):
|
23 |
+
return [recursive_to(i, target) for i in x]
|
24 |
+
else:
|
25 |
+
return x
|
hmr2/utils/geometry.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional
|
2 |
+
import torch
|
3 |
+
from torch.nn import functional as F
|
4 |
+
|
5 |
+
def aa_to_rotmat(theta: torch.Tensor):
|
6 |
+
"""
|
7 |
+
Convert axis-angle representation to rotation matrix.
|
8 |
+
Works by first converting it to a quaternion.
|
9 |
+
Args:
|
10 |
+
theta (torch.Tensor): Tensor of shape (B, 3) containing axis-angle representations.
|
11 |
+
Returns:
|
12 |
+
torch.Tensor: Corresponding rotation matrices with shape (B, 3, 3).
|
13 |
+
"""
|
14 |
+
norm = torch.norm(theta + 1e-8, p = 2, dim = 1)
|
15 |
+
angle = torch.unsqueeze(norm, -1)
|
16 |
+
normalized = torch.div(theta, angle)
|
17 |
+
angle = angle * 0.5
|
18 |
+
v_cos = torch.cos(angle)
|
19 |
+
v_sin = torch.sin(angle)
|
20 |
+
quat = torch.cat([v_cos, v_sin * normalized], dim = 1)
|
21 |
+
return quat_to_rotmat(quat)
|
22 |
+
|
23 |
+
def quat_to_rotmat(quat: torch.Tensor) -> torch.Tensor:
|
24 |
+
"""
|
25 |
+
Convert quaternion representation to rotation matrix.
|
26 |
+
Args:
|
27 |
+
quat (torch.Tensor) of shape (B, 4); 4 <===> (w, x, y, z).
|
28 |
+
Returns:
|
29 |
+
torch.Tensor: Corresponding rotation matrices with shape (B, 3, 3).
|
30 |
+
"""
|
31 |
+
norm_quat = quat
|
32 |
+
norm_quat = norm_quat/norm_quat.norm(p=2, dim=1, keepdim=True)
|
33 |
+
w, x, y, z = norm_quat[:,0], norm_quat[:,1], norm_quat[:,2], norm_quat[:,3]
|
34 |
+
|
35 |
+
B = quat.size(0)
|
36 |
+
|
37 |
+
w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2)
|
38 |
+
wx, wy, wz = w*x, w*y, w*z
|
39 |
+
xy, xz, yz = x*y, x*z, y*z
|
40 |
+
|
41 |
+
rotMat = torch.stack([w2 + x2 - y2 - z2, 2*xy - 2*wz, 2*wy + 2*xz,
|
42 |
+
2*wz + 2*xy, w2 - x2 + y2 - z2, 2*yz - 2*wx,
|
43 |
+
2*xz - 2*wy, 2*wx + 2*yz, w2 - x2 - y2 + z2], dim=1).view(B, 3, 3)
|
44 |
+
return rotMat
|
45 |
+
|
46 |
+
|
47 |
+
def rot6d_to_rotmat(x: torch.Tensor) -> torch.Tensor:
|
48 |
+
"""
|
49 |
+
Convert 6D rotation representation to 3x3 rotation matrix.
|
50 |
+
Based on Zhou et al., "On the Continuity of Rotation Representations in Neural Networks", CVPR 2019
|
51 |
+
Args:
|
52 |
+
x (torch.Tensor): (B,6) Batch of 6-D rotation representations.
|
53 |
+
Returns:
|
54 |
+
torch.Tensor: Batch of corresponding rotation matrices with shape (B,3,3).
|
55 |
+
"""
|
56 |
+
x = x.reshape(-1,2,3).permute(0, 2, 1).contiguous()
|
57 |
+
a1 = x[:, :, 0]
|
58 |
+
a2 = x[:, :, 1]
|
59 |
+
b1 = F.normalize(a1)
|
60 |
+
b2 = F.normalize(a2 - torch.einsum('bi,bi->b', b1, a2).unsqueeze(-1) * b1)
|
61 |
+
b3 = torch.cross(b1, b2)
|
62 |
+
return torch.stack((b1, b2, b3), dim=-1)
|
63 |
+
|
64 |
+
def perspective_projection(points: torch.Tensor,
|
65 |
+
translation: torch.Tensor,
|
66 |
+
focal_length: torch.Tensor,
|
67 |
+
camera_center: Optional[torch.Tensor] = None,
|
68 |
+
rotation: Optional[torch.Tensor] = None) -> torch.Tensor:
|
69 |
+
"""
|
70 |
+
Computes the perspective projection of a set of 3D points.
|
71 |
+
Args:
|
72 |
+
points (torch.Tensor): Tensor of shape (B, N, 3) containing the input 3D points.
|
73 |
+
translation (torch.Tensor): Tensor of shape (B, 3) containing the 3D camera translation.
|
74 |
+
focal_length (torch.Tensor): Tensor of shape (B, 2) containing the focal length in pixels.
|
75 |
+
camera_center (torch.Tensor): Tensor of shape (B, 2) containing the camera center in pixels.
|
76 |
+
rotation (torch.Tensor): Tensor of shape (B, 3, 3) containing the camera rotation.
|
77 |
+
Returns:
|
78 |
+
torch.Tensor: Tensor of shape (B, N, 2) containing the projection of the input points.
|
79 |
+
"""
|
80 |
+
batch_size = points.shape[0]
|
81 |
+
if rotation is None:
|
82 |
+
rotation = torch.eye(3, device=points.device, dtype=points.dtype).unsqueeze(0).expand(batch_size, -1, -1)
|
83 |
+
if camera_center is None:
|
84 |
+
camera_center = torch.zeros(batch_size, 2, device=points.device, dtype=points.dtype)
|
85 |
+
# Populate intrinsic camera matrix K.
|
86 |
+
K = torch.zeros([batch_size, 3, 3], device=points.device, dtype=points.dtype)
|
87 |
+
K[:,0,0] = focal_length[:,0]
|
88 |
+
K[:,1,1] = focal_length[:,1]
|
89 |
+
K[:,2,2] = 1.
|
90 |
+
K[:,:-1, -1] = camera_center
|
91 |
+
|
92 |
+
# Transform points
|
93 |
+
points = torch.einsum('bij,bkj->bki', rotation, points)
|
94 |
+
points = points + translation.unsqueeze(1)
|
95 |
+
|
96 |
+
# Apply perspective distortion
|
97 |
+
projected_points = points / points[:,:,-1].unsqueeze(-1)
|
98 |
+
|
99 |
+
# Apply camera intrinsics
|
100 |
+
projected_points = torch.einsum('bij,bkj->bki', K, projected_points)
|
101 |
+
|
102 |
+
return projected_points[:, :, :-1]
|
hmr2/utils/mesh_renderer.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
if 'PYOPENGL_PLATFORM' not in os.environ:
|
3 |
+
os.environ['PYOPENGL_PLATFORM'] = 'egl'
|
4 |
+
import torch
|
5 |
+
from torchvision.utils import make_grid
|
6 |
+
import numpy as np
|
7 |
+
import pyrender
|
8 |
+
import trimesh
|
9 |
+
import cv2
|
10 |
+
import torch.nn.functional as F
|
11 |
+
|
12 |
+
from .render_openpose import render_openpose
|
13 |
+
|
14 |
+
def create_raymond_lights():
|
15 |
+
import pyrender
|
16 |
+
thetas = np.pi * np.array([1.0 / 6.0, 1.0 / 6.0, 1.0 / 6.0])
|
17 |
+
phis = np.pi * np.array([0.0, 2.0 / 3.0, 4.0 / 3.0])
|
18 |
+
|
19 |
+
nodes = []
|
20 |
+
|
21 |
+
for phi, theta in zip(phis, thetas):
|
22 |
+
xp = np.sin(theta) * np.cos(phi)
|
23 |
+
yp = np.sin(theta) * np.sin(phi)
|
24 |
+
zp = np.cos(theta)
|
25 |
+
|
26 |
+
z = np.array([xp, yp, zp])
|
27 |
+
z = z / np.linalg.norm(z)
|
28 |
+
x = np.array([-z[1], z[0], 0.0])
|
29 |
+
if np.linalg.norm(x) == 0:
|
30 |
+
x = np.array([1.0, 0.0, 0.0])
|
31 |
+
x = x / np.linalg.norm(x)
|
32 |
+
y = np.cross(z, x)
|
33 |
+
|
34 |
+
matrix = np.eye(4)
|
35 |
+
matrix[:3,:3] = np.c_[x,y,z]
|
36 |
+
nodes.append(pyrender.Node(
|
37 |
+
light=pyrender.DirectionalLight(color=np.ones(3), intensity=1.0),
|
38 |
+
matrix=matrix
|
39 |
+
))
|
40 |
+
|
41 |
+
return nodes
|
42 |
+
|
43 |
+
class MeshRenderer:
|
44 |
+
|
45 |
+
def __init__(self, cfg, faces=None):
|
46 |
+
self.cfg = cfg
|
47 |
+
self.focal_length = cfg.EXTRA.FOCAL_LENGTH
|
48 |
+
self.img_res = cfg.MODEL.IMAGE_SIZE
|
49 |
+
self.renderer = pyrender.OffscreenRenderer(viewport_width=self.img_res,
|
50 |
+
viewport_height=self.img_res,
|
51 |
+
point_size=1.0)
|
52 |
+
|
53 |
+
self.camera_center = [self.img_res // 2, self.img_res // 2]
|
54 |
+
self.faces = faces
|
55 |
+
|
56 |
+
def visualize(self, vertices, camera_translation, images, focal_length=None, nrow=3, padding=2):
|
57 |
+
images_np = np.transpose(images, (0,2,3,1))
|
58 |
+
rend_imgs = []
|
59 |
+
for i in range(vertices.shape[0]):
|
60 |
+
fl = self.focal_length
|
61 |
+
rend_img = torch.from_numpy(np.transpose(self.__call__(vertices[i], camera_translation[i], images_np[i], focal_length=fl, side_view=False), (2,0,1))).float()
|
62 |
+
rend_img_side = torch.from_numpy(np.transpose(self.__call__(vertices[i], camera_translation[i], images_np[i], focal_length=fl, side_view=True), (2,0,1))).float()
|
63 |
+
rend_imgs.append(torch.from_numpy(images[i]))
|
64 |
+
rend_imgs.append(rend_img)
|
65 |
+
rend_imgs.append(rend_img_side)
|
66 |
+
rend_imgs = make_grid(rend_imgs, nrow=nrow, padding=padding)
|
67 |
+
return rend_imgs
|
68 |
+
|
69 |
+
def visualize_tensorboard(self, vertices, camera_translation, images, pred_keypoints, gt_keypoints, focal_length=None, nrow=5, padding=2):
|
70 |
+
images_np = np.transpose(images, (0,2,3,1))
|
71 |
+
rend_imgs = []
|
72 |
+
pred_keypoints = np.concatenate((pred_keypoints, np.ones_like(pred_keypoints)[:, :, [0]]), axis=-1)
|
73 |
+
pred_keypoints = self.img_res * (pred_keypoints + 0.5)
|
74 |
+
gt_keypoints[:, :, :-1] = self.img_res * (gt_keypoints[:, :, :-1] + 0.5)
|
75 |
+
keypoint_matches = [(1, 12), (2, 8), (3, 7), (4, 6), (5, 9), (6, 10), (7, 11), (8, 14), (9, 2), (10, 1), (11, 0), (12, 3), (13, 4), (14, 5)]
|
76 |
+
for i in range(vertices.shape[0]):
|
77 |
+
fl = self.focal_length
|
78 |
+
rend_img = torch.from_numpy(np.transpose(self.__call__(vertices[i], camera_translation[i], images_np[i], focal_length=fl, side_view=False), (2,0,1))).float()
|
79 |
+
rend_img_side = torch.from_numpy(np.transpose(self.__call__(vertices[i], camera_translation[i], images_np[i], focal_length=fl, side_view=True), (2,0,1))).float()
|
80 |
+
body_keypoints = pred_keypoints[i, :25]
|
81 |
+
extra_keypoints = pred_keypoints[i, -19:]
|
82 |
+
for pair in keypoint_matches:
|
83 |
+
body_keypoints[pair[0], :] = extra_keypoints[pair[1], :]
|
84 |
+
pred_keypoints_img = render_openpose(255 * images_np[i].copy(), body_keypoints) / 255
|
85 |
+
body_keypoints = gt_keypoints[i, :25]
|
86 |
+
extra_keypoints = gt_keypoints[i, -19:]
|
87 |
+
for pair in keypoint_matches:
|
88 |
+
if extra_keypoints[pair[1], -1] > 0 and body_keypoints[pair[0], -1] == 0:
|
89 |
+
body_keypoints[pair[0], :] = extra_keypoints[pair[1], :]
|
90 |
+
gt_keypoints_img = render_openpose(255*images_np[i].copy(), body_keypoints) / 255
|
91 |
+
rend_imgs.append(torch.from_numpy(images[i]))
|
92 |
+
rend_imgs.append(rend_img)
|
93 |
+
rend_imgs.append(rend_img_side)
|
94 |
+
rend_imgs.append(torch.from_numpy(pred_keypoints_img).permute(2,0,1))
|
95 |
+
rend_imgs.append(torch.from_numpy(gt_keypoints_img).permute(2,0,1))
|
96 |
+
rend_imgs = make_grid(rend_imgs, nrow=nrow, padding=padding)
|
97 |
+
return rend_imgs
|
98 |
+
|
99 |
+
def __call__(self, vertices, camera_translation, image, focal_length=5000, text=None, resize=None, side_view=False, baseColorFactor=(1.0, 1.0, 0.9, 1.0), rot_angle=90):
|
100 |
+
renderer = pyrender.OffscreenRenderer(viewport_width=image.shape[1],
|
101 |
+
viewport_height=image.shape[0],
|
102 |
+
point_size=1.0)
|
103 |
+
material = pyrender.MetallicRoughnessMaterial(
|
104 |
+
metallicFactor=0.0,
|
105 |
+
alphaMode='OPAQUE',
|
106 |
+
baseColorFactor=baseColorFactor)
|
107 |
+
|
108 |
+
camera_translation[0] *= -1.
|
109 |
+
|
110 |
+
mesh = trimesh.Trimesh(vertices.copy(), self.faces.copy())
|
111 |
+
if side_view:
|
112 |
+
rot = trimesh.transformations.rotation_matrix(
|
113 |
+
np.radians(rot_angle), [0, 1, 0])
|
114 |
+
mesh.apply_transform(rot)
|
115 |
+
rot = trimesh.transformations.rotation_matrix(
|
116 |
+
np.radians(180), [1, 0, 0])
|
117 |
+
mesh.apply_transform(rot)
|
118 |
+
mesh = pyrender.Mesh.from_trimesh(mesh, material=material)
|
119 |
+
|
120 |
+
scene = pyrender.Scene(bg_color=[0.0, 0.0, 0.0, 0.0],
|
121 |
+
ambient_light=(0.3, 0.3, 0.3))
|
122 |
+
scene.add(mesh, 'mesh')
|
123 |
+
|
124 |
+
camera_pose = np.eye(4)
|
125 |
+
camera_pose[:3, 3] = camera_translation
|
126 |
+
camera_center = [image.shape[1] / 2., image.shape[0] / 2.]
|
127 |
+
camera = pyrender.IntrinsicsCamera(fx=focal_length, fy=focal_length,
|
128 |
+
cx=camera_center[0], cy=camera_center[1])
|
129 |
+
scene.add(camera, pose=camera_pose)
|
130 |
+
|
131 |
+
|
132 |
+
light_nodes = create_raymond_lights()
|
133 |
+
for node in light_nodes:
|
134 |
+
scene.add_node(node)
|
135 |
+
|
136 |
+
color, rend_depth = renderer.render(scene, flags=pyrender.RenderFlags.RGBA)
|
137 |
+
color = color.astype(np.float32) / 255.0
|
138 |
+
valid_mask = (color[:, :, -1] > 0)[:, :, np.newaxis]
|
139 |
+
if not side_view:
|
140 |
+
output_img = (color[:, :, :3] * valid_mask +
|
141 |
+
(1 - valid_mask) * image)
|
142 |
+
else:
|
143 |
+
output_img = color[:, :, :3]
|
144 |
+
if resize is not None:
|
145 |
+
output_img = cv2.resize(output_img, resize)
|
146 |
+
|
147 |
+
output_img = output_img.astype(np.float32)
|
148 |
+
renderer.delete()
|
149 |
+
return output_img
|
hmr2/utils/pose_utils.py
ADDED
@@ -0,0 +1,306 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Code adapted from: https://github.com/akanazawa/hmr/blob/master/src/benchmark/eval_util.py
|
3 |
+
"""
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import numpy as np
|
7 |
+
from typing import Optional, Dict, List, Tuple
|
8 |
+
|
9 |
+
def compute_similarity_transform(S1: torch.Tensor, S2: torch.Tensor) -> torch.Tensor:
|
10 |
+
"""
|
11 |
+
Computes a similarity transform (sR, t) in a batched way that takes
|
12 |
+
a set of 3D points S1 (B, N, 3) closest to a set of 3D points S2 (B, N, 3),
|
13 |
+
where R is a 3x3 rotation matrix, t 3x1 translation, s scale.
|
14 |
+
i.e. solves the orthogonal Procrutes problem.
|
15 |
+
Args:
|
16 |
+
S1 (torch.Tensor): First set of points of shape (B, N, 3).
|
17 |
+
S2 (torch.Tensor): Second set of points of shape (B, N, 3).
|
18 |
+
Returns:
|
19 |
+
(torch.Tensor): The first set of points after applying the similarity transformation.
|
20 |
+
"""
|
21 |
+
|
22 |
+
batch_size = S1.shape[0]
|
23 |
+
S1 = S1.permute(0, 2, 1)
|
24 |
+
S2 = S2.permute(0, 2, 1)
|
25 |
+
# 1. Remove mean.
|
26 |
+
mu1 = S1.mean(dim=2, keepdim=True)
|
27 |
+
mu2 = S2.mean(dim=2, keepdim=True)
|
28 |
+
X1 = S1 - mu1
|
29 |
+
X2 = S2 - mu2
|
30 |
+
|
31 |
+
# 2. Compute variance of X1 used for scale.
|
32 |
+
var1 = (X1**2).sum(dim=(1,2))
|
33 |
+
|
34 |
+
# 3. The outer product of X1 and X2.
|
35 |
+
K = torch.matmul(X1, X2.permute(0, 2, 1))
|
36 |
+
|
37 |
+
# 4. Solution that Maximizes trace(R'K) is R=U*V', where U, V are singular vectors of K.
|
38 |
+
U, s, V = torch.svd(K)
|
39 |
+
Vh = V.permute(0, 2, 1)
|
40 |
+
|
41 |
+
# Construct Z that fixes the orientation of R to get det(R)=1.
|
42 |
+
Z = torch.eye(U.shape[1], device=U.device).unsqueeze(0).repeat(batch_size, 1, 1)
|
43 |
+
Z[:, -1, -1] *= torch.sign(torch.linalg.det(torch.matmul(U, Vh)))
|
44 |
+
|
45 |
+
# Construct R.
|
46 |
+
R = torch.matmul(torch.matmul(V, Z), U.permute(0, 2, 1))
|
47 |
+
|
48 |
+
# 5. Recover scale.
|
49 |
+
trace = torch.matmul(R, K).diagonal(offset=0, dim1=-1, dim2=-2).sum(dim=-1)
|
50 |
+
scale = (trace / var1).unsqueeze(dim=-1).unsqueeze(dim=-1)
|
51 |
+
|
52 |
+
# 6. Recover translation.
|
53 |
+
t = mu2 - scale*torch.matmul(R, mu1)
|
54 |
+
|
55 |
+
# 7. Error:
|
56 |
+
S1_hat = scale*torch.matmul(R, S1) + t
|
57 |
+
|
58 |
+
return S1_hat.permute(0, 2, 1)
|
59 |
+
|
60 |
+
def reconstruction_error(S1, S2) -> np.array:
|
61 |
+
"""
|
62 |
+
Computes the mean Euclidean distance of 2 set of points S1, S2 after performing Procrustes alignment.
|
63 |
+
Args:
|
64 |
+
S1 (torch.Tensor): First set of points of shape (B, N, 3).
|
65 |
+
S2 (torch.Tensor): Second set of points of shape (B, N, 3).
|
66 |
+
Returns:
|
67 |
+
(np.array): Reconstruction error.
|
68 |
+
"""
|
69 |
+
S1_hat = compute_similarity_transform(S1, S2)
|
70 |
+
re = torch.sqrt( ((S1_hat - S2)** 2).sum(dim=-1)).mean(dim=-1)
|
71 |
+
return re
|
72 |
+
|
73 |
+
def eval_pose(pred_joints, gt_joints) -> Tuple[np.array, np.array]:
|
74 |
+
"""
|
75 |
+
Compute joint errors in mm before and after Procrustes alignment.
|
76 |
+
Args:
|
77 |
+
pred_joints (torch.Tensor): Predicted 3D joints of shape (B, N, 3).
|
78 |
+
gt_joints (torch.Tensor): Ground truth 3D joints of shape (B, N, 3).
|
79 |
+
Returns:
|
80 |
+
Tuple[np.array, np.array]: Joint errors in mm before and after alignment.
|
81 |
+
"""
|
82 |
+
# Absolute error (MPJPE)
|
83 |
+
mpjpe = torch.sqrt(((pred_joints - gt_joints) ** 2).sum(dim=-1)).mean(dim=-1).cpu().numpy()
|
84 |
+
|
85 |
+
# Reconstuction_error
|
86 |
+
r_error = reconstruction_error(pred_joints, gt_joints).cpu().numpy()
|
87 |
+
return 1000 * mpjpe, 1000 * r_error
|
88 |
+
|
89 |
+
class Evaluator:
|
90 |
+
|
91 |
+
def __init__(self,
|
92 |
+
dataset_length: int,
|
93 |
+
keypoint_list: List,
|
94 |
+
pelvis_ind: int,
|
95 |
+
metrics: List = ['mode_mpjpe', 'mode_re', 'min_mpjpe', 'min_re'],
|
96 |
+
pck_thresholds: Optional[List] = None):
|
97 |
+
"""
|
98 |
+
Class used for evaluating trained models on different 3D pose datasets.
|
99 |
+
Args:
|
100 |
+
dataset_length (int): Total dataset length.
|
101 |
+
keypoint_list [List]: List of keypoints used for evaluation.
|
102 |
+
pelvis_ind (int): Index of pelvis keypoint; used for aligning the predictions and ground truth.
|
103 |
+
metrics [List]: List of evaluation metrics to record.
|
104 |
+
"""
|
105 |
+
self.dataset_length = dataset_length
|
106 |
+
self.keypoint_list = keypoint_list
|
107 |
+
self.pelvis_ind = pelvis_ind
|
108 |
+
self.metrics = metrics
|
109 |
+
for metric in self.metrics:
|
110 |
+
setattr(self, metric, np.zeros((dataset_length,)))
|
111 |
+
self.counter = 0
|
112 |
+
if pck_thresholds is None:
|
113 |
+
self.pck_evaluator = None
|
114 |
+
else:
|
115 |
+
self.pck_evaluator = EvaluatorPCK(pck_thresholds)
|
116 |
+
|
117 |
+
def log(self):
|
118 |
+
"""
|
119 |
+
Print current evaluation metrics
|
120 |
+
"""
|
121 |
+
if self.counter == 0:
|
122 |
+
print('Evaluation has not started')
|
123 |
+
return
|
124 |
+
print(f'{self.counter} / {self.dataset_length} samples')
|
125 |
+
if self.pck_evaluator is not None:
|
126 |
+
self.pck_evaluator.log()
|
127 |
+
for metric in self.metrics:
|
128 |
+
if metric in ['mode_mpjpe', 'mode_re', 'min_mpjpe', 'min_re']:
|
129 |
+
unit = 'mm'
|
130 |
+
else:
|
131 |
+
unit = ''
|
132 |
+
print(f'{metric}: {getattr(self, metric)[:self.counter].mean()} {unit}')
|
133 |
+
print('***')
|
134 |
+
|
135 |
+
def get_metrics_dict(self) -> Dict:
|
136 |
+
"""
|
137 |
+
Returns:
|
138 |
+
Dict: Dictionary of evaluation metrics.
|
139 |
+
"""
|
140 |
+
d1 = {metric: getattr(self, metric)[:self.counter].mean() for metric in self.metrics}
|
141 |
+
if self.pck_evaluator is not None:
|
142 |
+
d2 = self.pck_evaluator.get_metrics_dict()
|
143 |
+
d1.update(d2)
|
144 |
+
return d1
|
145 |
+
|
146 |
+
def __call__(self, output: Dict, batch: Dict, opt_output: Optional[Dict] = None):
|
147 |
+
"""
|
148 |
+
Evaluate current batch.
|
149 |
+
Args:
|
150 |
+
output (Dict): Regression output.
|
151 |
+
batch (Dict): Dictionary containing images and their corresponding annotations.
|
152 |
+
opt_output (Dict): Optimization output.
|
153 |
+
"""
|
154 |
+
if self.pck_evaluator is not None:
|
155 |
+
self.pck_evaluator(output, batch, opt_output)
|
156 |
+
|
157 |
+
pred_keypoints_3d = output['pred_keypoints_3d'].detach()
|
158 |
+
pred_keypoints_3d = pred_keypoints_3d[:,None,:,:]
|
159 |
+
batch_size = pred_keypoints_3d.shape[0]
|
160 |
+
num_samples = pred_keypoints_3d.shape[1]
|
161 |
+
gt_keypoints_3d = batch['keypoints_3d'][:, :, :-1].unsqueeze(1).repeat(1, num_samples, 1, 1)
|
162 |
+
|
163 |
+
# Align predictions and ground truth such that the pelvis location is at the origin
|
164 |
+
pred_keypoints_3d -= pred_keypoints_3d[:, :, [self.pelvis_ind]]
|
165 |
+
gt_keypoints_3d -= gt_keypoints_3d[:, :, [self.pelvis_ind]]
|
166 |
+
|
167 |
+
# Compute joint errors
|
168 |
+
mpjpe, re = eval_pose(pred_keypoints_3d.reshape(batch_size * num_samples, -1, 3)[:, self.keypoint_list], gt_keypoints_3d.reshape(batch_size * num_samples, -1 ,3)[:, self.keypoint_list])
|
169 |
+
mpjpe = mpjpe.reshape(batch_size, num_samples)
|
170 |
+
re = re.reshape(batch_size, num_samples)
|
171 |
+
|
172 |
+
# Compute 2d keypoint errors
|
173 |
+
pred_keypoints_2d = output['pred_keypoints_2d'].detach()
|
174 |
+
pred_keypoints_2d = pred_keypoints_2d[:,None,:,:]
|
175 |
+
gt_keypoints_2d = batch['keypoints_2d'][:,None,:,:].repeat(1, num_samples, 1, 1)
|
176 |
+
conf = gt_keypoints_2d[:, :, :, -1].clone()
|
177 |
+
kp_err = torch.nn.functional.mse_loss(
|
178 |
+
pred_keypoints_2d,
|
179 |
+
gt_keypoints_2d[:, :, :, :-1],
|
180 |
+
reduction='none'
|
181 |
+
).sum(dim=3)
|
182 |
+
kp_l2_loss = (conf * kp_err).mean(dim=2)
|
183 |
+
kp_l2_loss = kp_l2_loss.detach().cpu().numpy()
|
184 |
+
|
185 |
+
# Compute joint errors after optimization, if available.
|
186 |
+
if opt_output is not None:
|
187 |
+
opt_keypoints_3d = opt_output['model_joints']
|
188 |
+
opt_keypoints_3d -= opt_keypoints_3d[:, [self.pelvis_ind]]
|
189 |
+
opt_mpjpe, opt_re = eval_pose(opt_keypoints_3d[:, self.keypoint_list], gt_keypoints_3d[:, 0, self.keypoint_list])
|
190 |
+
|
191 |
+
# The 0-th sample always corresponds to the mode
|
192 |
+
if hasattr(self, 'mode_mpjpe'):
|
193 |
+
mode_mpjpe = mpjpe[:, 0]
|
194 |
+
self.mode_mpjpe[self.counter:self.counter+batch_size] = mode_mpjpe
|
195 |
+
if hasattr(self, 'mode_re'):
|
196 |
+
mode_re = re[:, 0]
|
197 |
+
self.mode_re[self.counter:self.counter+batch_size] = mode_re
|
198 |
+
if hasattr(self, 'mode_kpl2'):
|
199 |
+
mode_kpl2 = kp_l2_loss[:, 0]
|
200 |
+
self.mode_kpl2[self.counter:self.counter+batch_size] = mode_kpl2
|
201 |
+
if hasattr(self, 'min_mpjpe'):
|
202 |
+
min_mpjpe = mpjpe.min(axis=-1)
|
203 |
+
self.min_mpjpe[self.counter:self.counter+batch_size] = min_mpjpe
|
204 |
+
if hasattr(self, 'min_re'):
|
205 |
+
min_re = re.min(axis=-1)
|
206 |
+
self.min_re[self.counter:self.counter+batch_size] = min_re
|
207 |
+
if hasattr(self, 'min_kpl2'):
|
208 |
+
min_kpl2 = kp_l2_loss.min(axis=-1)
|
209 |
+
self.min_kpl2[self.counter:self.counter+batch_size] = min_kpl2
|
210 |
+
if hasattr(self, 'opt_mpjpe'):
|
211 |
+
self.opt_mpjpe[self.counter:self.counter+batch_size] = opt_mpjpe
|
212 |
+
if hasattr(self, 'opt_re'):
|
213 |
+
self.opt_re[self.counter:self.counter+batch_size] = opt_re
|
214 |
+
|
215 |
+
self.counter += batch_size
|
216 |
+
|
217 |
+
if hasattr(self, 'mode_mpjpe') and hasattr(self, 'mode_re'):
|
218 |
+
return {
|
219 |
+
'mode_mpjpe': mode_mpjpe,
|
220 |
+
'mode_re': mode_re,
|
221 |
+
}
|
222 |
+
else:
|
223 |
+
return {}
|
224 |
+
|
225 |
+
|
226 |
+
class EvaluatorPCK:
|
227 |
+
|
228 |
+
def __init__(self, thresholds: List = [0.05, 0.1, 0.2, 0.3, 0.4, 0.5],):
|
229 |
+
"""
|
230 |
+
Class used for evaluating trained models on different 3D pose datasets.
|
231 |
+
Args:
|
232 |
+
thresholds [List]: List of PCK thresholds to evaluate.
|
233 |
+
metrics [List]: List of evaluation metrics to record.
|
234 |
+
"""
|
235 |
+
self.thresholds = thresholds
|
236 |
+
self.pred_kp_2d = []
|
237 |
+
self.gt_kp_2d = []
|
238 |
+
self.gt_conf_2d = []
|
239 |
+
self.counter = 0
|
240 |
+
|
241 |
+
def log(self):
|
242 |
+
"""
|
243 |
+
Print current evaluation metrics
|
244 |
+
"""
|
245 |
+
if self.counter == 0:
|
246 |
+
print('Evaluation has not started')
|
247 |
+
return
|
248 |
+
print(f'{self.counter} samples')
|
249 |
+
metrics_dict = self.get_metrics_dict()
|
250 |
+
for metric in metrics_dict:
|
251 |
+
print(f'{metric}: {metrics_dict[metric]}')
|
252 |
+
print('***')
|
253 |
+
|
254 |
+
def get_metrics_dict(self) -> Dict:
|
255 |
+
"""
|
256 |
+
Returns:
|
257 |
+
Dict: Dictionary of evaluation metrics.
|
258 |
+
"""
|
259 |
+
pcks = self.compute_pcks()
|
260 |
+
metrics = {}
|
261 |
+
for thr, (acc,avg_acc,cnt) in zip(self.thresholds, pcks):
|
262 |
+
metrics.update({f'kp{i}_pck_{thr}': float(a) for i, a in enumerate(acc) if a>=0})
|
263 |
+
metrics.update({f'kpAvg_pck_{thr}': float(avg_acc)})
|
264 |
+
return metrics
|
265 |
+
|
266 |
+
def compute_pcks(self):
|
267 |
+
pred_kp_2d = np.concatenate(self.pred_kp_2d, axis=0)
|
268 |
+
gt_kp_2d = np.concatenate(self.gt_kp_2d, axis=0)
|
269 |
+
gt_conf_2d = np.concatenate(self.gt_conf_2d, axis=0)
|
270 |
+
assert pred_kp_2d.shape == gt_kp_2d.shape
|
271 |
+
assert pred_kp_2d[..., 0].shape == gt_conf_2d.shape
|
272 |
+
assert pred_kp_2d.shape[1] == 1 # num_samples
|
273 |
+
|
274 |
+
from mmpose.core.evaluation import keypoint_pck_accuracy
|
275 |
+
pcks = [
|
276 |
+
keypoint_pck_accuracy(
|
277 |
+
pred_kp_2d[:, 0, :, :],
|
278 |
+
gt_kp_2d[:, 0, :, :],
|
279 |
+
gt_conf_2d[:, 0, :]>0.5,
|
280 |
+
thr=thr,
|
281 |
+
normalize = np.ones((len(pred_kp_2d),2)) # Already in [-0.5,0.5] range. No need to normalize
|
282 |
+
)
|
283 |
+
for thr in self.thresholds
|
284 |
+
]
|
285 |
+
return pcks
|
286 |
+
|
287 |
+
def __call__(self, output: Dict, batch: Dict, opt_output: Optional[Dict] = None):
|
288 |
+
"""
|
289 |
+
Evaluate current batch.
|
290 |
+
Args:
|
291 |
+
output (Dict): Regression output.
|
292 |
+
batch (Dict): Dictionary containing images and their corresponding annotations.
|
293 |
+
opt_output (Dict): Optimization output.
|
294 |
+
"""
|
295 |
+
pred_keypoints_2d = output['pred_keypoints_2d'].detach()
|
296 |
+
num_samples = 1
|
297 |
+
batch_size = pred_keypoints_2d.shape[0]
|
298 |
+
|
299 |
+
pred_keypoints_2d = pred_keypoints_2d[:,None,:,:]
|
300 |
+
gt_keypoints_2d = batch['keypoints_2d'][:,None,:,:].repeat(1, num_samples, 1, 1)
|
301 |
+
|
302 |
+
self.pred_kp_2d.append(pred_keypoints_2d[:, :, :, :2].detach().cpu().numpy())
|
303 |
+
self.gt_conf_2d.append(gt_keypoints_2d[:, :, :, -1].detach().cpu().numpy())
|
304 |
+
self.gt_kp_2d.append(gt_keypoints_2d[:, :, :, :2].detach().cpu().numpy())
|
305 |
+
|
306 |
+
self.counter += batch_size
|
hmr2/utils/render_openpose.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Render OpenPose keypoints.
|
3 |
+
Code was ported to Python from the official C++ implementation https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/src/openpose/utilities/keypoint.cpp
|
4 |
+
"""
|
5 |
+
import cv2
|
6 |
+
import math
|
7 |
+
import numpy as np
|
8 |
+
from typing import List, Tuple
|
9 |
+
|
10 |
+
def get_keypoints_rectangle(keypoints: np.array, threshold: float) -> Tuple[float, float, float]:
|
11 |
+
"""
|
12 |
+
Compute rectangle enclosing keypoints above the threshold.
|
13 |
+
Args:
|
14 |
+
keypoints (np.array): Keypoint array of shape (N, 3).
|
15 |
+
threshold (float): Confidence visualization threshold.
|
16 |
+
Returns:
|
17 |
+
Tuple[float, float, float]: Rectangle width, height and area.
|
18 |
+
"""
|
19 |
+
valid_ind = keypoints[:, -1] > threshold
|
20 |
+
if valid_ind.sum() > 0:
|
21 |
+
valid_keypoints = keypoints[valid_ind][:, :-1]
|
22 |
+
max_x = valid_keypoints[:,0].max()
|
23 |
+
max_y = valid_keypoints[:,1].max()
|
24 |
+
min_x = valid_keypoints[:,0].min()
|
25 |
+
min_y = valid_keypoints[:,1].min()
|
26 |
+
width = max_x - min_x
|
27 |
+
height = max_y - min_y
|
28 |
+
area = width * height
|
29 |
+
return width, height, area
|
30 |
+
else:
|
31 |
+
return 0,0,0
|
32 |
+
|
33 |
+
def render_keypoints(img: np.array,
|
34 |
+
keypoints: np.array,
|
35 |
+
pairs: List,
|
36 |
+
colors: List,
|
37 |
+
thickness_circle_ratio: float,
|
38 |
+
thickness_line_ratio_wrt_circle: float,
|
39 |
+
pose_scales: List,
|
40 |
+
threshold: float = 0.1) -> np.array:
|
41 |
+
"""
|
42 |
+
Render keypoints on input image.
|
43 |
+
Args:
|
44 |
+
img (np.array): Input image of shape (H, W, 3) with pixel values in the [0,255] range.
|
45 |
+
keypoints (np.array): Keypoint array of shape (N, 3).
|
46 |
+
pairs (List): List of keypoint pairs per limb.
|
47 |
+
colors: (List): List of colors per keypoint.
|
48 |
+
thickness_circle_ratio (float): Circle thickness ratio.
|
49 |
+
thickness_line_ratio_wrt_circle (float): Line thickness ratio wrt the circle.
|
50 |
+
pose_scales (List): List of pose scales.
|
51 |
+
threshold (float): Only visualize keypoints with confidence above the threshold.
|
52 |
+
Returns:
|
53 |
+
(np.array): Image of shape (H, W, 3) with keypoints drawn on top of the original image.
|
54 |
+
"""
|
55 |
+
img_orig = img.copy()
|
56 |
+
width, height = img.shape[1], img.shape[2]
|
57 |
+
area = width * height
|
58 |
+
|
59 |
+
lineType = 8
|
60 |
+
shift = 0
|
61 |
+
numberColors = len(colors)
|
62 |
+
thresholdRectangle = 0.1
|
63 |
+
|
64 |
+
person_width, person_height, person_area = get_keypoints_rectangle(keypoints, thresholdRectangle)
|
65 |
+
if person_area > 0:
|
66 |
+
ratioAreas = min(1, max(person_width / width, person_height / height))
|
67 |
+
thicknessRatio = np.maximum(np.round(math.sqrt(area) * thickness_circle_ratio * ratioAreas), 2)
|
68 |
+
thicknessCircle = np.maximum(1, thicknessRatio if ratioAreas > 0.05 else -np.ones_like(thicknessRatio))
|
69 |
+
thicknessLine = np.maximum(1, np.round(thicknessRatio * thickness_line_ratio_wrt_circle))
|
70 |
+
radius = thicknessRatio / 2
|
71 |
+
|
72 |
+
img = np.ascontiguousarray(img.copy())
|
73 |
+
for i, pair in enumerate(pairs):
|
74 |
+
index1, index2 = pair
|
75 |
+
if keypoints[index1, -1] > threshold and keypoints[index2, -1] > threshold:
|
76 |
+
thicknessLineScaled = int(round(min(thicknessLine[index1], thicknessLine[index2]) * pose_scales[0]))
|
77 |
+
colorIndex = index2
|
78 |
+
color = colors[colorIndex % numberColors]
|
79 |
+
keypoint1 = keypoints[index1, :-1].astype(np.int)
|
80 |
+
keypoint2 = keypoints[index2, :-1].astype(np.int)
|
81 |
+
cv2.line(img, tuple(keypoint1.tolist()), tuple(keypoint2.tolist()), tuple(color.tolist()), thicknessLineScaled, lineType, shift)
|
82 |
+
for part in range(len(keypoints)):
|
83 |
+
faceIndex = part
|
84 |
+
if keypoints[faceIndex, -1] > threshold:
|
85 |
+
radiusScaled = int(round(radius[faceIndex] * pose_scales[0]))
|
86 |
+
thicknessCircleScaled = int(round(thicknessCircle[faceIndex] * pose_scales[0]))
|
87 |
+
colorIndex = part
|
88 |
+
color = colors[colorIndex % numberColors]
|
89 |
+
center = keypoints[faceIndex, :-1].astype(np.int)
|
90 |
+
cv2.circle(img, tuple(center.tolist()), radiusScaled, tuple(color.tolist()), thicknessCircleScaled, lineType, shift)
|
91 |
+
return img
|
92 |
+
|
93 |
+
def render_body_keypoints(img: np.array,
|
94 |
+
body_keypoints: np.array) -> np.array:
|
95 |
+
"""
|
96 |
+
Render OpenPose body keypoints on input image.
|
97 |
+
Args:
|
98 |
+
img (np.array): Input image of shape (H, W, 3) with pixel values in the [0,255] range.
|
99 |
+
body_keypoints (np.array): Keypoint array of shape (N, 3); 3 <====> (x, y, confidence).
|
100 |
+
Returns:
|
101 |
+
(np.array): Image of shape (H, W, 3) with keypoints drawn on top of the original image.
|
102 |
+
"""
|
103 |
+
|
104 |
+
thickness_circle_ratio = 1./75. * np.ones(body_keypoints.shape[0])
|
105 |
+
thickness_line_ratio_wrt_circle = 0.75
|
106 |
+
pairs = []
|
107 |
+
pairs = [1,8,1,2,1,5,2,3,3,4,5,6,6,7,8,9,9,10,10,11,8,12,12,13,13,14,1,0,0,15,15,17,0,16,16,18,14,19,19,20,14,21,11,22,22,23,11,24]
|
108 |
+
pairs = np.array(pairs).reshape(-1,2)
|
109 |
+
colors = [255., 0., 85.,
|
110 |
+
255., 0., 0.,
|
111 |
+
255., 85., 0.,
|
112 |
+
255., 170., 0.,
|
113 |
+
255., 255., 0.,
|
114 |
+
170., 255., 0.,
|
115 |
+
85., 255., 0.,
|
116 |
+
0., 255., 0.,
|
117 |
+
255., 0., 0.,
|
118 |
+
0., 255., 85.,
|
119 |
+
0., 255., 170.,
|
120 |
+
0., 255., 255.,
|
121 |
+
0., 170., 255.,
|
122 |
+
0., 85., 255.,
|
123 |
+
0., 0., 255.,
|
124 |
+
255., 0., 170.,
|
125 |
+
170., 0., 255.,
|
126 |
+
255., 0., 255.,
|
127 |
+
85., 0., 255.,
|
128 |
+
0., 0., 255.,
|
129 |
+
0., 0., 255.,
|
130 |
+
0., 0., 255.,
|
131 |
+
0., 255., 255.,
|
132 |
+
0., 255., 255.,
|
133 |
+
0., 255., 255.]
|
134 |
+
colors = np.array(colors).reshape(-1,3)
|
135 |
+
pose_scales = [1]
|
136 |
+
return render_keypoints(img, body_keypoints, pairs, colors, thickness_circle_ratio, thickness_line_ratio_wrt_circle, pose_scales, 0.1)
|
137 |
+
|
138 |
+
def render_openpose(img: np.array,
|
139 |
+
body_keypoints: np.array) -> np.array:
|
140 |
+
"""
|
141 |
+
Render keypoints in the OpenPose format on input image.
|
142 |
+
Args:
|
143 |
+
img (np.array): Input image of shape (H, W, 3) with pixel values in the [0,255] range.
|
144 |
+
body_keypoints (np.array): Keypoint array of shape (N, 3); 3 <====> (x, y, confidence).
|
145 |
+
Returns:
|
146 |
+
(np.array): Image of shape (H, W, 3) with keypoints drawn on top of the original image.
|
147 |
+
"""
|
148 |
+
img = render_body_keypoints(img, body_keypoints)
|
149 |
+
return img
|
hmr2/utils/renderer.py
ADDED
@@ -0,0 +1,396 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
if 'PYOPENGL_PLATFORM' not in os.environ:
|
3 |
+
os.environ['PYOPENGL_PLATFORM'] = 'egl'
|
4 |
+
import torch
|
5 |
+
import numpy as np
|
6 |
+
import pyrender
|
7 |
+
import trimesh
|
8 |
+
import cv2
|
9 |
+
from yacs.config import CfgNode
|
10 |
+
from typing import List, Optional
|
11 |
+
|
12 |
+
def cam_crop_to_full(cam_bbox, box_center, box_size, img_size, focal_length=5000.):
|
13 |
+
# Convert cam_bbox to full image
|
14 |
+
img_w, img_h = img_size[:, 0], img_size[:, 1]
|
15 |
+
cx, cy, b = box_center[:, 0], box_center[:, 1], box_size
|
16 |
+
w_2, h_2 = img_w / 2., img_h / 2.
|
17 |
+
bs = b * cam_bbox[:, 0] + 1e-9
|
18 |
+
tz = 2 * focal_length / bs
|
19 |
+
tx = (2 * (cx - w_2) / bs) + cam_bbox[:, 1]
|
20 |
+
ty = (2 * (cy - h_2) / bs) + cam_bbox[:, 2]
|
21 |
+
full_cam = torch.stack([tx, ty, tz], dim=-1)
|
22 |
+
return full_cam
|
23 |
+
|
24 |
+
def get_light_poses(n_lights=5, elevation=np.pi / 3, dist=12):
|
25 |
+
# get lights in a circle around origin at elevation
|
26 |
+
thetas = elevation * np.ones(n_lights)
|
27 |
+
phis = 2 * np.pi * np.arange(n_lights) / n_lights
|
28 |
+
poses = []
|
29 |
+
trans = make_translation(torch.tensor([0, 0, dist]))
|
30 |
+
for phi, theta in zip(phis, thetas):
|
31 |
+
rot = make_rotation(rx=-theta, ry=phi, order="xyz")
|
32 |
+
poses.append((rot @ trans).numpy())
|
33 |
+
return poses
|
34 |
+
|
35 |
+
def make_translation(t):
|
36 |
+
return make_4x4_pose(torch.eye(3), t)
|
37 |
+
|
38 |
+
def make_rotation(rx=0, ry=0, rz=0, order="xyz"):
|
39 |
+
Rx = rotx(rx)
|
40 |
+
Ry = roty(ry)
|
41 |
+
Rz = rotz(rz)
|
42 |
+
if order == "xyz":
|
43 |
+
R = Rz @ Ry @ Rx
|
44 |
+
elif order == "xzy":
|
45 |
+
R = Ry @ Rz @ Rx
|
46 |
+
elif order == "yxz":
|
47 |
+
R = Rz @ Rx @ Ry
|
48 |
+
elif order == "yzx":
|
49 |
+
R = Rx @ Rz @ Ry
|
50 |
+
elif order == "zyx":
|
51 |
+
R = Rx @ Ry @ Rz
|
52 |
+
elif order == "zxy":
|
53 |
+
R = Ry @ Rx @ Rz
|
54 |
+
return make_4x4_pose(R, torch.zeros(3))
|
55 |
+
|
56 |
+
def make_4x4_pose(R, t):
|
57 |
+
"""
|
58 |
+
:param R (*, 3, 3)
|
59 |
+
:param t (*, 3)
|
60 |
+
return (*, 4, 4)
|
61 |
+
"""
|
62 |
+
dims = R.shape[:-2]
|
63 |
+
pose_3x4 = torch.cat([R, t.view(*dims, 3, 1)], dim=-1)
|
64 |
+
bottom = (
|
65 |
+
torch.tensor([0, 0, 0, 1], device=R.device)
|
66 |
+
.reshape(*(1,) * len(dims), 1, 4)
|
67 |
+
.expand(*dims, 1, 4)
|
68 |
+
)
|
69 |
+
return torch.cat([pose_3x4, bottom], dim=-2)
|
70 |
+
|
71 |
+
|
72 |
+
def rotx(theta):
|
73 |
+
return torch.tensor(
|
74 |
+
[
|
75 |
+
[1, 0, 0],
|
76 |
+
[0, np.cos(theta), -np.sin(theta)],
|
77 |
+
[0, np.sin(theta), np.cos(theta)],
|
78 |
+
],
|
79 |
+
dtype=torch.float32,
|
80 |
+
)
|
81 |
+
|
82 |
+
|
83 |
+
def roty(theta):
|
84 |
+
return torch.tensor(
|
85 |
+
[
|
86 |
+
[np.cos(theta), 0, np.sin(theta)],
|
87 |
+
[0, 1, 0],
|
88 |
+
[-np.sin(theta), 0, np.cos(theta)],
|
89 |
+
],
|
90 |
+
dtype=torch.float32,
|
91 |
+
)
|
92 |
+
|
93 |
+
|
94 |
+
def rotz(theta):
|
95 |
+
return torch.tensor(
|
96 |
+
[
|
97 |
+
[np.cos(theta), -np.sin(theta), 0],
|
98 |
+
[np.sin(theta), np.cos(theta), 0],
|
99 |
+
[0, 0, 1],
|
100 |
+
],
|
101 |
+
dtype=torch.float32,
|
102 |
+
)
|
103 |
+
|
104 |
+
|
105 |
+
def create_raymond_lights() -> List[pyrender.Node]:
|
106 |
+
"""
|
107 |
+
Return raymond light nodes for the scene.
|
108 |
+
"""
|
109 |
+
thetas = np.pi * np.array([1.0 / 6.0, 1.0 / 6.0, 1.0 / 6.0])
|
110 |
+
phis = np.pi * np.array([0.0, 2.0 / 3.0, 4.0 / 3.0])
|
111 |
+
|
112 |
+
nodes = []
|
113 |
+
|
114 |
+
for phi, theta in zip(phis, thetas):
|
115 |
+
xp = np.sin(theta) * np.cos(phi)
|
116 |
+
yp = np.sin(theta) * np.sin(phi)
|
117 |
+
zp = np.cos(theta)
|
118 |
+
|
119 |
+
z = np.array([xp, yp, zp])
|
120 |
+
z = z / np.linalg.norm(z)
|
121 |
+
x = np.array([-z[1], z[0], 0.0])
|
122 |
+
if np.linalg.norm(x) == 0:
|
123 |
+
x = np.array([1.0, 0.0, 0.0])
|
124 |
+
x = x / np.linalg.norm(x)
|
125 |
+
y = np.cross(z, x)
|
126 |
+
|
127 |
+
matrix = np.eye(4)
|
128 |
+
matrix[:3,:3] = np.c_[x,y,z]
|
129 |
+
nodes.append(pyrender.Node(
|
130 |
+
light=pyrender.DirectionalLight(color=np.ones(3), intensity=1.0),
|
131 |
+
matrix=matrix
|
132 |
+
))
|
133 |
+
|
134 |
+
return nodes
|
135 |
+
|
136 |
+
class Renderer:
|
137 |
+
|
138 |
+
def __init__(self, cfg: CfgNode, faces: np.array):
|
139 |
+
"""
|
140 |
+
Wrapper around the pyrender renderer to render SMPL meshes.
|
141 |
+
Args:
|
142 |
+
cfg (CfgNode): Model config file.
|
143 |
+
faces (np.array): Array of shape (F, 3) containing the mesh faces.
|
144 |
+
"""
|
145 |
+
self.cfg = cfg
|
146 |
+
self.focal_length = cfg.EXTRA.FOCAL_LENGTH
|
147 |
+
self.img_res = cfg.MODEL.IMAGE_SIZE
|
148 |
+
# self.renderer = pyrender.OffscreenRenderer(viewport_width=self.img_res,
|
149 |
+
# viewport_height=self.img_res,
|
150 |
+
# point_size=1.0)
|
151 |
+
|
152 |
+
self.camera_center = [self.img_res // 2, self.img_res // 2]
|
153 |
+
self.faces = faces
|
154 |
+
|
155 |
+
def __call__(self,
|
156 |
+
vertices: np.array,
|
157 |
+
camera_translation: np.array,
|
158 |
+
image: torch.Tensor,
|
159 |
+
full_frame: bool = False,
|
160 |
+
imgname: Optional[str] = None,
|
161 |
+
side_view=False, rot_angle=90,
|
162 |
+
mesh_base_color=(1.0, 1.0, 0.9),
|
163 |
+
scene_bg_color=(0,0,0),
|
164 |
+
return_rgba=False,
|
165 |
+
) -> np.array:
|
166 |
+
"""
|
167 |
+
Render meshes on input image
|
168 |
+
Args:
|
169 |
+
vertices (np.array): Array of shape (V, 3) containing the mesh vertices.
|
170 |
+
camera_translation (np.array): Array of shape (3,) with the camera translation.
|
171 |
+
image (torch.Tensor): Tensor of shape (3, H, W) containing the image crop with normalized pixel values.
|
172 |
+
full_frame (bool): If True, then render on the full image.
|
173 |
+
imgname (Optional[str]): Contains the original image filenamee. Used only if full_frame == True.
|
174 |
+
"""
|
175 |
+
|
176 |
+
if full_frame:
|
177 |
+
image = cv2.imread(imgname).astype(np.float32)[:, :, ::-1] / 255.
|
178 |
+
else:
|
179 |
+
image = image.clone() * torch.tensor(self.cfg.MODEL.IMAGE_STD, device=image.device).reshape(3,1,1)
|
180 |
+
image = image + torch.tensor(self.cfg.MODEL.IMAGE_MEAN, device=image.device).reshape(3,1,1)
|
181 |
+
image = image.permute(1, 2, 0).cpu().numpy()
|
182 |
+
|
183 |
+
renderer = pyrender.OffscreenRenderer(viewport_width=image.shape[1],
|
184 |
+
viewport_height=image.shape[0],
|
185 |
+
point_size=1.0)
|
186 |
+
material = pyrender.MetallicRoughnessMaterial(
|
187 |
+
metallicFactor=0.0,
|
188 |
+
alphaMode='OPAQUE',
|
189 |
+
baseColorFactor=(*mesh_base_color, 1.0))
|
190 |
+
|
191 |
+
camera_translation[0] *= -1.
|
192 |
+
|
193 |
+
mesh = trimesh.Trimesh(vertices.copy(), self.faces.copy())
|
194 |
+
if side_view:
|
195 |
+
rot = trimesh.transformations.rotation_matrix(
|
196 |
+
np.radians(rot_angle), [0, 1, 0])
|
197 |
+
mesh.apply_transform(rot)
|
198 |
+
rot = trimesh.transformations.rotation_matrix(
|
199 |
+
np.radians(180), [1, 0, 0])
|
200 |
+
mesh.apply_transform(rot)
|
201 |
+
mesh = pyrender.Mesh.from_trimesh(mesh, material=material)
|
202 |
+
|
203 |
+
scene = pyrender.Scene(bg_color=[*scene_bg_color, 0.0],
|
204 |
+
ambient_light=(0.3, 0.3, 0.3))
|
205 |
+
scene.add(mesh, 'mesh')
|
206 |
+
|
207 |
+
camera_pose = np.eye(4)
|
208 |
+
camera_pose[:3, 3] = camera_translation
|
209 |
+
camera_center = [image.shape[1] / 2., image.shape[0] / 2.]
|
210 |
+
camera = pyrender.IntrinsicsCamera(fx=self.focal_length, fy=self.focal_length,
|
211 |
+
cx=camera_center[0], cy=camera_center[1])
|
212 |
+
scene.add(camera, pose=camera_pose)
|
213 |
+
|
214 |
+
|
215 |
+
light_nodes = create_raymond_lights()
|
216 |
+
for node in light_nodes:
|
217 |
+
scene.add_node(node)
|
218 |
+
|
219 |
+
color, rend_depth = renderer.render(scene, flags=pyrender.RenderFlags.RGBA)
|
220 |
+
color = color.astype(np.float32) / 255.0
|
221 |
+
renderer.delete()
|
222 |
+
|
223 |
+
if return_rgba:
|
224 |
+
return color
|
225 |
+
|
226 |
+
valid_mask = (color[:, :, -1])[:, :, np.newaxis]
|
227 |
+
if not side_view:
|
228 |
+
output_img = (color[:, :, :3] * valid_mask + (1 - valid_mask) * image)
|
229 |
+
else:
|
230 |
+
output_img = color[:, :, :3]
|
231 |
+
|
232 |
+
output_img = output_img.astype(np.float32)
|
233 |
+
return output_img
|
234 |
+
|
235 |
+
def vertices_to_trimesh(self, vertices, camera_translation, mesh_base_color=(1.0, 1.0, 0.9),
|
236 |
+
rot_axis=[1,0,0], rot_angle=0,):
|
237 |
+
# material = pyrender.MetallicRoughnessMaterial(
|
238 |
+
# metallicFactor=0.0,
|
239 |
+
# alphaMode='OPAQUE',
|
240 |
+
# baseColorFactor=(*mesh_base_color, 1.0))
|
241 |
+
vertex_colors = np.array([(*mesh_base_color, 1.0)] * vertices.shape[0])
|
242 |
+
print(vertices.shape, camera_translation.shape)
|
243 |
+
mesh = trimesh.Trimesh(vertices.copy() + camera_translation, self.faces.copy(), vertex_colors=vertex_colors)
|
244 |
+
# mesh = trimesh.Trimesh(vertices.copy(), self.faces.copy())
|
245 |
+
|
246 |
+
rot = trimesh.transformations.rotation_matrix(
|
247 |
+
np.radians(rot_angle), rot_axis)
|
248 |
+
mesh.apply_transform(rot)
|
249 |
+
|
250 |
+
rot = trimesh.transformations.rotation_matrix(
|
251 |
+
np.radians(180), [1, 0, 0])
|
252 |
+
mesh.apply_transform(rot)
|
253 |
+
return mesh
|
254 |
+
|
255 |
+
def render_rgba(
|
256 |
+
self,
|
257 |
+
vertices: np.array,
|
258 |
+
cam_t = None,
|
259 |
+
rot=None,
|
260 |
+
rot_axis=[1,0,0],
|
261 |
+
rot_angle=0,
|
262 |
+
camera_z=3,
|
263 |
+
# camera_translation: np.array,
|
264 |
+
mesh_base_color=(1.0, 1.0, 0.9),
|
265 |
+
scene_bg_color=(0,0,0),
|
266 |
+
render_res=[256, 256],
|
267 |
+
):
|
268 |
+
|
269 |
+
renderer = pyrender.OffscreenRenderer(viewport_width=render_res[0],
|
270 |
+
viewport_height=render_res[1],
|
271 |
+
point_size=1.0)
|
272 |
+
# material = pyrender.MetallicRoughnessMaterial(
|
273 |
+
# metallicFactor=0.0,
|
274 |
+
# alphaMode='OPAQUE',
|
275 |
+
# baseColorFactor=(*mesh_base_color, 1.0))
|
276 |
+
|
277 |
+
if cam_t is not None:
|
278 |
+
camera_translation = cam_t.copy()
|
279 |
+
# camera_translation[0] *= -1.
|
280 |
+
else:
|
281 |
+
camera_translation = np.array([0, 0, camera_z * self.focal_length/render_res[1]])
|
282 |
+
|
283 |
+
mesh = self.vertices_to_trimesh(vertices, camera_translation, mesh_base_color, rot_axis, rot_angle)
|
284 |
+
mesh = pyrender.Mesh.from_trimesh(mesh)
|
285 |
+
# mesh = pyrender.Mesh.from_trimesh(mesh, material=material)
|
286 |
+
|
287 |
+
scene = pyrender.Scene(bg_color=[*scene_bg_color, 0.0],
|
288 |
+
ambient_light=(0.3, 0.3, 0.3))
|
289 |
+
scene.add(mesh, 'mesh')
|
290 |
+
|
291 |
+
camera_pose = np.eye(4)
|
292 |
+
# camera_pose[:3, 3] = camera_translation
|
293 |
+
camera_center = [render_res[0] / 2., render_res[1] / 2.]
|
294 |
+
camera = pyrender.IntrinsicsCamera(fx=self.focal_length, fy=self.focal_length,
|
295 |
+
cx=camera_center[0], cy=camera_center[1])
|
296 |
+
|
297 |
+
# Create camera node and add it to pyRender scene
|
298 |
+
camera_node = pyrender.Node(camera=camera, matrix=camera_pose)
|
299 |
+
scene.add_node(camera_node)
|
300 |
+
self.add_point_lighting(scene, camera_node)
|
301 |
+
self.add_lighting(scene, camera_node)
|
302 |
+
|
303 |
+
light_nodes = create_raymond_lights()
|
304 |
+
for node in light_nodes:
|
305 |
+
scene.add_node(node)
|
306 |
+
|
307 |
+
color, rend_depth = renderer.render(scene, flags=pyrender.RenderFlags.RGBA)
|
308 |
+
color = color.astype(np.float32) / 255.0
|
309 |
+
renderer.delete()
|
310 |
+
|
311 |
+
return color
|
312 |
+
|
313 |
+
def render_rgba_multiple(
|
314 |
+
self,
|
315 |
+
vertices: List[np.array],
|
316 |
+
cam_t: List[np.array],
|
317 |
+
rot_axis=[1,0,0],
|
318 |
+
rot_angle=0,
|
319 |
+
mesh_base_color=(1.0, 1.0, 0.9),
|
320 |
+
scene_bg_color=(0,0,0),
|
321 |
+
render_res=[256, 256],
|
322 |
+
):
|
323 |
+
|
324 |
+
renderer = pyrender.OffscreenRenderer(viewport_width=render_res[0],
|
325 |
+
viewport_height=render_res[1],
|
326 |
+
point_size=1.0)
|
327 |
+
# material = pyrender.MetallicRoughnessMaterial(
|
328 |
+
# metallicFactor=0.0,
|
329 |
+
# alphaMode='OPAQUE',
|
330 |
+
# baseColorFactor=(*mesh_base_color, 1.0))
|
331 |
+
|
332 |
+
mesh_list = [pyrender.Mesh.from_trimesh(self.vertices_to_trimesh(vvv, ttt.copy(), mesh_base_color, rot_axis, rot_angle)) for vvv,ttt in zip(vertices, cam_t)]
|
333 |
+
|
334 |
+
scene = pyrender.Scene(bg_color=[*scene_bg_color, 0.0],
|
335 |
+
ambient_light=(0.3, 0.3, 0.3))
|
336 |
+
for i,mesh in enumerate(mesh_list):
|
337 |
+
scene.add(mesh, f'mesh_{i}')
|
338 |
+
|
339 |
+
camera_pose = np.eye(4)
|
340 |
+
# camera_pose[:3, 3] = camera_translation
|
341 |
+
camera_center = [render_res[0] / 2., render_res[1] / 2.]
|
342 |
+
camera = pyrender.IntrinsicsCamera(fx=self.focal_length, fy=self.focal_length,
|
343 |
+
cx=camera_center[0], cy=camera_center[1])
|
344 |
+
|
345 |
+
# Create camera node and add it to pyRender scene
|
346 |
+
camera_node = pyrender.Node(camera=camera, matrix=camera_pose)
|
347 |
+
scene.add_node(camera_node)
|
348 |
+
self.add_point_lighting(scene, camera_node)
|
349 |
+
self.add_lighting(scene, camera_node)
|
350 |
+
|
351 |
+
light_nodes = create_raymond_lights()
|
352 |
+
for node in light_nodes:
|
353 |
+
scene.add_node(node)
|
354 |
+
|
355 |
+
color, rend_depth = renderer.render(scene, flags=pyrender.RenderFlags.RGBA)
|
356 |
+
color = color.astype(np.float32) / 255.0
|
357 |
+
renderer.delete()
|
358 |
+
|
359 |
+
return color
|
360 |
+
|
361 |
+
def add_lighting(self, scene, cam_node, color=np.ones(3), intensity=1.0):
|
362 |
+
# from phalp.visualize.py_renderer import get_light_poses
|
363 |
+
light_poses = get_light_poses()
|
364 |
+
light_poses.append(np.eye(4))
|
365 |
+
cam_pose = scene.get_pose(cam_node)
|
366 |
+
for i, pose in enumerate(light_poses):
|
367 |
+
matrix = cam_pose @ pose
|
368 |
+
node = pyrender.Node(
|
369 |
+
name=f"light-{i:02d}",
|
370 |
+
light=pyrender.DirectionalLight(color=color, intensity=intensity),
|
371 |
+
matrix=matrix,
|
372 |
+
)
|
373 |
+
if scene.has_node(node):
|
374 |
+
continue
|
375 |
+
scene.add_node(node)
|
376 |
+
|
377 |
+
def add_point_lighting(self, scene, cam_node, color=np.ones(3), intensity=1.0):
|
378 |
+
# from phalp.visualize.py_renderer import get_light_poses
|
379 |
+
light_poses = get_light_poses(dist=0.5)
|
380 |
+
light_poses.append(np.eye(4))
|
381 |
+
cam_pose = scene.get_pose(cam_node)
|
382 |
+
for i, pose in enumerate(light_poses):
|
383 |
+
matrix = cam_pose @ pose
|
384 |
+
# node = pyrender.Node(
|
385 |
+
# name=f"light-{i:02d}",
|
386 |
+
# light=pyrender.DirectionalLight(color=color, intensity=intensity),
|
387 |
+
# matrix=matrix,
|
388 |
+
# )
|
389 |
+
node = pyrender.Node(
|
390 |
+
name=f"plight-{i:02d}",
|
391 |
+
light=pyrender.PointLight(color=color, intensity=intensity),
|
392 |
+
matrix=matrix,
|
393 |
+
)
|
394 |
+
if scene.has_node(node):
|
395 |
+
continue
|
396 |
+
scene.add_node(node)
|
hmr2/utils/skeleton_renderer.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
import trimesh
|
4 |
+
from typing import Optional
|
5 |
+
from yacs.config import CfgNode
|
6 |
+
|
7 |
+
from .geometry import perspective_projection
|
8 |
+
from .render_openpose import render_openpose
|
9 |
+
|
10 |
+
class SkeletonRenderer:
|
11 |
+
|
12 |
+
def __init__(self, cfg: CfgNode):
|
13 |
+
"""
|
14 |
+
Object used to render 3D keypoints. Faster for use during training.
|
15 |
+
Args:
|
16 |
+
cfg (CfgNode): Model config file.
|
17 |
+
"""
|
18 |
+
self.cfg = cfg
|
19 |
+
|
20 |
+
def __call__(self,
|
21 |
+
pred_keypoints_3d: torch.Tensor,
|
22 |
+
gt_keypoints_3d: torch.Tensor,
|
23 |
+
gt_keypoints_2d: torch.Tensor,
|
24 |
+
images: Optional[np.array] = None,
|
25 |
+
camera_translation: Optional[torch.Tensor] = None) -> np.array:
|
26 |
+
"""
|
27 |
+
Render batch of 3D keypoints.
|
28 |
+
Args:
|
29 |
+
pred_keypoints_3d (torch.Tensor): Tensor of shape (B, S, N, 3) containing a batch of predicted 3D keypoints, with S samples per image.
|
30 |
+
gt_keypoints_3d (torch.Tensor): Tensor of shape (B, N, 4) containing corresponding ground truth 3D keypoints; last value is the confidence.
|
31 |
+
gt_keypoints_2d (torch.Tensor): Tensor of shape (B, N, 3) containing corresponding ground truth 2D keypoints.
|
32 |
+
images (torch.Tensor): Tensor of shape (B, H, W, 3) containing images with values in the [0,255] range.
|
33 |
+
camera_translation (torch.Tensor): Tensor of shape (B, 3) containing the camera translation.
|
34 |
+
Returns:
|
35 |
+
np.array : Image with the following layout. Each row contains the a) input image,
|
36 |
+
b) image with gt 2D keypoints,
|
37 |
+
c) image with projected gt 3D keypoints,
|
38 |
+
d_1, ... , d_S) image with projected predicted 3D keypoints,
|
39 |
+
e) gt 3D keypoints rendered from a side view,
|
40 |
+
f_1, ... , f_S) predicted 3D keypoints frorm a side view
|
41 |
+
"""
|
42 |
+
batch_size = pred_keypoints_3d.shape[0]
|
43 |
+
# num_samples = pred_keypoints_3d.shape[1]
|
44 |
+
pred_keypoints_3d = pred_keypoints_3d.clone().cpu().float()
|
45 |
+
gt_keypoints_3d = gt_keypoints_3d.clone().cpu().float()
|
46 |
+
gt_keypoints_3d[:, :, :-1] = gt_keypoints_3d[:, :, :-1] - gt_keypoints_3d[:, [25+14], :-1] + pred_keypoints_3d[:, [25+14]]
|
47 |
+
gt_keypoints_2d = gt_keypoints_2d.clone().cpu().float().numpy()
|
48 |
+
gt_keypoints_2d[:, :, :-1] = self.cfg.MODEL.IMAGE_SIZE * (gt_keypoints_2d[:, :, :-1] + 1.0) / 2.0
|
49 |
+
|
50 |
+
openpose_indices = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]
|
51 |
+
gt_indices = [12, 8, 7, 6, 9, 10, 11, 14, 2, 1, 0, 3, 4, 5]
|
52 |
+
gt_indices = [25 + i for i in gt_indices]
|
53 |
+
keypoints_to_render = torch.ones(batch_size, gt_keypoints_3d.shape[1], 1)
|
54 |
+
rotation = torch.eye(3).unsqueeze(0)
|
55 |
+
if camera_translation is None:
|
56 |
+
camera_translation = torch.tensor([0.0, 0.0, 2 * self.cfg.EXTRA.FOCAL_LENGTH / (0.8 * self.cfg.MODEL.IMAGE_SIZE)]).unsqueeze(0).repeat(batch_size, 1)
|
57 |
+
else:
|
58 |
+
camera_translation = camera_translation.cpu()
|
59 |
+
|
60 |
+
if images is None:
|
61 |
+
images = np.zeros((batch_size, self.cfg.MODEL.IMAGE_SIZE, self.cfg.MODEL.IMAGE_SIZE, 3))
|
62 |
+
focal_length = torch.tensor([self.cfg.EXTRA.FOCAL_LENGTH, self.cfg.EXTRA.FOCAL_LENGTH]).reshape(1, 2)
|
63 |
+
camera_center = torch.tensor([self.cfg.MODEL.IMAGE_SIZE, self.cfg.MODEL.IMAGE_SIZE], dtype=torch.float).reshape(1, 2) / 2.
|
64 |
+
gt_keypoints_3d_proj = perspective_projection(gt_keypoints_3d[:, :, :-1], rotation=rotation.repeat(batch_size, 1, 1), translation=camera_translation[:, :], focal_length=focal_length.repeat(batch_size, 1), camera_center=camera_center.repeat(batch_size, 1))
|
65 |
+
pred_keypoints_3d_proj = perspective_projection(pred_keypoints_3d.reshape(batch_size, -1, 3), rotation=rotation.repeat(batch_size, 1, 1), translation=camera_translation.reshape(batch_size, -1), focal_length=focal_length.repeat(batch_size, 1), camera_center=camera_center.repeat(batch_size, 1)).reshape(batch_size, -1, 2)
|
66 |
+
gt_keypoints_3d_proj = torch.cat([gt_keypoints_3d_proj, gt_keypoints_3d[:, :, [-1]]], dim=-1).cpu().numpy()
|
67 |
+
pred_keypoints_3d_proj = torch.cat([pred_keypoints_3d_proj, keypoints_to_render.reshape(batch_size, -1, 1)], dim=-1).cpu().numpy()
|
68 |
+
rows = []
|
69 |
+
# Rotate keypoints to visualize side view
|
70 |
+
R = torch.tensor(trimesh.transformations.rotation_matrix(np.radians(90), [0, 1, 0])[:3, :3]).float()
|
71 |
+
gt_keypoints_3d_side = gt_keypoints_3d.clone()
|
72 |
+
gt_keypoints_3d_side[:, :, :-1] = torch.einsum('bni,ij->bnj', gt_keypoints_3d_side[:, :, :-1], R)
|
73 |
+
pred_keypoints_3d_side = pred_keypoints_3d.clone()
|
74 |
+
pred_keypoints_3d_side = torch.einsum('bni,ij->bnj', pred_keypoints_3d_side, R)
|
75 |
+
gt_keypoints_3d_proj_side = perspective_projection(gt_keypoints_3d_side[:, :, :-1], rotation=rotation.repeat(batch_size, 1, 1), translation=camera_translation[:, :], focal_length=focal_length.repeat(batch_size, 1), camera_center=camera_center.repeat(batch_size, 1))
|
76 |
+
pred_keypoints_3d_proj_side = perspective_projection(pred_keypoints_3d_side.reshape(batch_size, -1, 3), rotation=rotation.repeat(batch_size, 1, 1), translation=camera_translation.reshape(batch_size, -1), focal_length=focal_length.repeat(batch_size, 1), camera_center=camera_center.repeat(batch_size, 1)).reshape(batch_size, -1, 2)
|
77 |
+
gt_keypoints_3d_proj_side = torch.cat([gt_keypoints_3d_proj_side, gt_keypoints_3d_side[:, :, [-1]]], dim=-1).cpu().numpy()
|
78 |
+
pred_keypoints_3d_proj_side = torch.cat([pred_keypoints_3d_proj_side, keypoints_to_render.reshape(batch_size, -1, 1)], dim=-1).cpu().numpy()
|
79 |
+
for i in range(batch_size):
|
80 |
+
img = images[i]
|
81 |
+
side_img = np.zeros((self.cfg.MODEL.IMAGE_SIZE, self.cfg.MODEL.IMAGE_SIZE, 3))
|
82 |
+
# gt 2D keypoints
|
83 |
+
body_keypoints_2d = gt_keypoints_2d[i, :25].copy()
|
84 |
+
for op, gt in zip(openpose_indices, gt_indices):
|
85 |
+
if gt_keypoints_2d[i, gt, -1] > body_keypoints_2d[op, -1]:
|
86 |
+
body_keypoints_2d[op] = gt_keypoints_2d[i, gt]
|
87 |
+
gt_keypoints_img = render_openpose(img, body_keypoints_2d) / 255.
|
88 |
+
# gt 3D keypoints
|
89 |
+
body_keypoints_3d_proj = gt_keypoints_3d_proj[i, :25].copy()
|
90 |
+
for op, gt in zip(openpose_indices, gt_indices):
|
91 |
+
if gt_keypoints_3d_proj[i, gt, -1] > body_keypoints_3d_proj[op, -1]:
|
92 |
+
body_keypoints_3d_proj[op] = gt_keypoints_3d_proj[i, gt]
|
93 |
+
gt_keypoints_3d_proj_img = render_openpose(img, body_keypoints_3d_proj) / 255.
|
94 |
+
# gt 3D keypoints from the side
|
95 |
+
body_keypoints_3d_proj = gt_keypoints_3d_proj_side[i, :25].copy()
|
96 |
+
for op, gt in zip(openpose_indices, gt_indices):
|
97 |
+
if gt_keypoints_3d_proj_side[i, gt, -1] > body_keypoints_3d_proj[op, -1]:
|
98 |
+
body_keypoints_3d_proj[op] = gt_keypoints_3d_proj_side[i, gt]
|
99 |
+
gt_keypoints_3d_proj_img_side = render_openpose(side_img, body_keypoints_3d_proj) / 255.
|
100 |
+
# pred 3D keypoints
|
101 |
+
pred_keypoints_3d_proj_imgs = []
|
102 |
+
body_keypoints_3d_proj = pred_keypoints_3d_proj[i, :25].copy()
|
103 |
+
for op, gt in zip(openpose_indices, gt_indices):
|
104 |
+
if pred_keypoints_3d_proj[i, gt, -1] >= body_keypoints_3d_proj[op, -1]:
|
105 |
+
body_keypoints_3d_proj[op] = pred_keypoints_3d_proj[i, gt]
|
106 |
+
pred_keypoints_3d_proj_imgs.append(render_openpose(img, body_keypoints_3d_proj) / 255.)
|
107 |
+
pred_keypoints_3d_proj_img = np.concatenate(pred_keypoints_3d_proj_imgs, axis=1)
|
108 |
+
# gt 3D keypoints from the side
|
109 |
+
pred_keypoints_3d_proj_imgs_side = []
|
110 |
+
body_keypoints_3d_proj = pred_keypoints_3d_proj_side[i, :25].copy()
|
111 |
+
for op, gt in zip(openpose_indices, gt_indices):
|
112 |
+
if pred_keypoints_3d_proj_side[i, gt, -1] >= body_keypoints_3d_proj[op, -1]:
|
113 |
+
body_keypoints_3d_proj[op] = pred_keypoints_3d_proj_side[i, gt]
|
114 |
+
pred_keypoints_3d_proj_imgs_side.append(render_openpose(side_img, body_keypoints_3d_proj) / 255.)
|
115 |
+
pred_keypoints_3d_proj_img_side = np.concatenate(pred_keypoints_3d_proj_imgs_side, axis=1)
|
116 |
+
rows.append(np.concatenate((gt_keypoints_img, gt_keypoints_3d_proj_img, pred_keypoints_3d_proj_img, gt_keypoints_3d_proj_img_side, pred_keypoints_3d_proj_img_side), axis=1))
|
117 |
+
# Concatenate images
|
118 |
+
img = np.concatenate(rows, axis=0)
|
119 |
+
img[:, ::self.cfg.MODEL.IMAGE_SIZE, :] = 1.0
|
120 |
+
img[::self.cfg.MODEL.IMAGE_SIZE, :, :] = 1.0
|
121 |
+
img[:, (1+1+1)*self.cfg.MODEL.IMAGE_SIZE, :] = 0.5
|
122 |
+
return img
|
hmr2/utils/texture_utils.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
from torch.nn import functional as F
|
4 |
+
# from psbody.mesh.visibility import visibility_compute
|
5 |
+
|
6 |
+
def uv_to_xyz_and_normals(verts, f, fmap, bmap, ftov):
|
7 |
+
vn = estimate_vertex_normals(verts, f, ftov)
|
8 |
+
pixels_to_set = torch.nonzero(fmap+1)
|
9 |
+
x_to_set = pixels_to_set[:,0]
|
10 |
+
y_to_set = pixels_to_set[:,1]
|
11 |
+
b_coords = bmap[x_to_set, y_to_set, :]
|
12 |
+
f_coords = fmap[x_to_set, y_to_set]
|
13 |
+
v_ids = f[f_coords]
|
14 |
+
points = (b_coords[:,0,None]*verts[:,v_ids[:,0]]
|
15 |
+
+ b_coords[:,1,None]*verts[:,v_ids[:,1]]
|
16 |
+
+ b_coords[:,2,None]*verts[:,v_ids[:,2]])
|
17 |
+
normals = (b_coords[:,0,None]*vn[:,v_ids[:,0]]
|
18 |
+
+ b_coords[:,1,None]*vn[:,v_ids[:,1]]
|
19 |
+
+ b_coords[:,2,None]*vn[:,v_ids[:,2]])
|
20 |
+
return points, normals, vn, f_coords
|
21 |
+
|
22 |
+
def estimate_vertex_normals(v, f, ftov):
|
23 |
+
face_normals = TriNormalsScaled(v, f)
|
24 |
+
non_scaled_normals = torch.einsum('ij,bjk->bik', ftov, face_normals)
|
25 |
+
norms = torch.sum(non_scaled_normals ** 2.0, 2) ** 0.5
|
26 |
+
norms[norms == 0] = 1.0
|
27 |
+
return torch.div(non_scaled_normals, norms[:,:,None])
|
28 |
+
|
29 |
+
def TriNormalsScaled(v, f):
|
30 |
+
return torch.cross(_edges_for(v, f, 1, 0), _edges_for(v, f, 2, 0))
|
31 |
+
|
32 |
+
def _edges_for(v, f, cplus, cminus):
|
33 |
+
return v[:,f[:,cplus]] - v[:,f[:,cminus]]
|
34 |
+
|
35 |
+
def psbody_get_face_visibility(v, n, f, cams, normal_threshold=0.5):
|
36 |
+
bn, nverts, _ = v.shape
|
37 |
+
nfaces, _ = f.shape
|
38 |
+
vis_f = np.zeros([bn, nfaces], dtype='float32')
|
39 |
+
for i in range(bn):
|
40 |
+
vis, n_dot_cam = visibility_compute(v=v[i], n=n[i], f=f, cams=cams)
|
41 |
+
vis_v = (vis == 1) & (n_dot_cam > normal_threshold)
|
42 |
+
vis_f[i] = np.all(vis_v[0,f],1)
|
43 |
+
return vis_f
|
44 |
+
|
45 |
+
def compute_uvsampler(vt, ft, tex_size=6):
|
46 |
+
"""
|
47 |
+
For this mesh, pre-computes the UV coordinates for
|
48 |
+
F x T x T points.
|
49 |
+
Returns F x T x T x 2
|
50 |
+
"""
|
51 |
+
uv = obj2nmr_uvmap(ft, vt, tex_size=tex_size)
|
52 |
+
uv = uv.reshape(-1, tex_size, tex_size, 2)
|
53 |
+
return uv
|
54 |
+
|
55 |
+
def obj2nmr_uvmap(ft, vt, tex_size=6):
|
56 |
+
"""
|
57 |
+
Converts obj uv_map to NMR uv_map (F x T x T x 2),
|
58 |
+
where tex_size (T) is the sample rate on each face.
|
59 |
+
"""
|
60 |
+
# This is F x 3 x 2
|
61 |
+
uv_map_for_verts = vt[ft]
|
62 |
+
|
63 |
+
# obj's y coordinate is [1-0], but image is [0-1]
|
64 |
+
uv_map_for_verts[:, :, 1] = 1 - uv_map_for_verts[:, :, 1]
|
65 |
+
|
66 |
+
# range [0, 1] -> [-1, 1]
|
67 |
+
uv_map_for_verts = (2 * uv_map_for_verts) - 1
|
68 |
+
|
69 |
+
alpha = np.arange(tex_size, dtype=np.float) / (tex_size - 1)
|
70 |
+
beta = np.arange(tex_size, dtype=np.float) / (tex_size - 1)
|
71 |
+
import itertools
|
72 |
+
# Barycentric coordinate values
|
73 |
+
coords = np.stack([p for p in itertools.product(*[alpha, beta])])
|
74 |
+
|
75 |
+
# Compute alpha, beta (this is the same order as NMR)
|
76 |
+
v2 = uv_map_for_verts[:, 2]
|
77 |
+
v0v2 = uv_map_for_verts[:, 0] - uv_map_for_verts[:, 2]
|
78 |
+
v1v2 = uv_map_for_verts[:, 1] - uv_map_for_verts[:, 2]
|
79 |
+
# Interpolate the vertex uv values: F x 2 x T*2
|
80 |
+
uv_map = np.dstack([v0v2, v1v2]).dot(coords.T) + v2.reshape(-1, 2, 1)
|
81 |
+
|
82 |
+
# F x T*2 x 2 -> F x T x T x 2
|
83 |
+
uv_map = np.transpose(uv_map, (0, 2, 1)).reshape(-1, tex_size, tex_size, 2)
|
84 |
+
|
85 |
+
return uv_map
|
hmr2/utils/utils_detectron2.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import detectron2.data.transforms as T
|
2 |
+
import torch
|
3 |
+
from detectron2.checkpoint import DetectionCheckpointer
|
4 |
+
from detectron2.config import CfgNode, instantiate
|
5 |
+
from detectron2.data import MetadataCatalog
|
6 |
+
from omegaconf import OmegaConf
|
7 |
+
|
8 |
+
|
9 |
+
class DefaultPredictor_Lazy:
|
10 |
+
"""Create a simple end-to-end predictor with the given config that runs on single device for a
|
11 |
+
single input image.
|
12 |
+
|
13 |
+
Compared to using the model directly, this class does the following additions:
|
14 |
+
|
15 |
+
1. Load checkpoint from the weights specified in config (cfg.MODEL.WEIGHTS).
|
16 |
+
2. Always take BGR image as the input and apply format conversion internally.
|
17 |
+
3. Apply resizing defined by the config (`cfg.INPUT.{MIN,MAX}_SIZE_TEST`).
|
18 |
+
4. Take one input image and produce a single output, instead of a batch.
|
19 |
+
|
20 |
+
This is meant for simple demo purposes, so it does the above steps automatically.
|
21 |
+
This is not meant for benchmarks or running complicated inference logic.
|
22 |
+
If you'd like to do anything more complicated, please refer to its source code as
|
23 |
+
examples to build and use the model manually.
|
24 |
+
|
25 |
+
Attributes:
|
26 |
+
metadata (Metadata): the metadata of the underlying dataset, obtained from
|
27 |
+
test dataset name in the config.
|
28 |
+
|
29 |
+
|
30 |
+
Examples:
|
31 |
+
::
|
32 |
+
pred = DefaultPredictor(cfg)
|
33 |
+
inputs = cv2.imread("input.jpg")
|
34 |
+
outputs = pred(inputs)
|
35 |
+
"""
|
36 |
+
|
37 |
+
def __init__(self, cfg):
|
38 |
+
"""
|
39 |
+
Args:
|
40 |
+
cfg: a yacs CfgNode or a omegaconf dict object.
|
41 |
+
"""
|
42 |
+
if isinstance(cfg, CfgNode):
|
43 |
+
self.cfg = cfg.clone() # cfg can be modified by model
|
44 |
+
self.model = build_model(self.cfg) # noqa: F821
|
45 |
+
if len(cfg.DATASETS.TEST):
|
46 |
+
test_dataset = cfg.DATASETS.TEST[0]
|
47 |
+
|
48 |
+
checkpointer = DetectionCheckpointer(self.model)
|
49 |
+
checkpointer.load(cfg.MODEL.WEIGHTS)
|
50 |
+
|
51 |
+
self.aug = T.ResizeShortestEdge(
|
52 |
+
[cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST], cfg.INPUT.MAX_SIZE_TEST
|
53 |
+
)
|
54 |
+
|
55 |
+
self.input_format = cfg.INPUT.FORMAT
|
56 |
+
else: # new LazyConfig
|
57 |
+
self.cfg = cfg
|
58 |
+
self.model = instantiate(cfg.model)
|
59 |
+
test_dataset = OmegaConf.select(cfg, "dataloader.test.dataset.names", default=None)
|
60 |
+
if isinstance(test_dataset, (list, tuple)):
|
61 |
+
test_dataset = test_dataset[0]
|
62 |
+
|
63 |
+
checkpointer = DetectionCheckpointer(self.model)
|
64 |
+
checkpointer.load(OmegaConf.select(cfg, "train.init_checkpoint", default=""))
|
65 |
+
|
66 |
+
mapper = instantiate(cfg.dataloader.test.mapper)
|
67 |
+
self.aug = mapper.augmentations
|
68 |
+
self.input_format = mapper.image_format
|
69 |
+
|
70 |
+
self.model.eval().cuda()
|
71 |
+
if test_dataset:
|
72 |
+
self.metadata = MetadataCatalog.get(test_dataset)
|
73 |
+
assert self.input_format in ["RGB", "BGR"], self.input_format
|
74 |
+
|
75 |
+
def __call__(self, original_image):
|
76 |
+
"""
|
77 |
+
Args:
|
78 |
+
original_image (np.ndarray): an image of shape (H, W, C) (in BGR order).
|
79 |
+
|
80 |
+
Returns:
|
81 |
+
predictions (dict):
|
82 |
+
the output of the model for one image only.
|
83 |
+
See :doc:`/tutorials/models` for details about the format.
|
84 |
+
"""
|
85 |
+
with torch.no_grad():
|
86 |
+
if self.input_format == "RGB":
|
87 |
+
original_image = original_image[:, :, ::-1]
|
88 |
+
height, width = original_image.shape[:2]
|
89 |
+
image = self.aug(T.AugInput(original_image)).apply_image(original_image)
|
90 |
+
image = torch.as_tensor(image.astype("float32").transpose(2, 0, 1))
|
91 |
+
inputs = {"image": image, "height": height, "width": width}
|
92 |
+
predictions = self.model([inputs])[0]
|
93 |
+
return predictions
|
requirements.txt
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# torch
|
2 |
+
# pytorch-lightning
|
3 |
+
# smplx==0.1.28
|
4 |
+
# pyrender
|
5 |
+
# opencv-python
|
6 |
+
# yacs
|
7 |
+
# scikit-image
|
8 |
+
# einops
|
9 |
+
# timm
|
10 |
+
# OmegaConf
|
11 |
+
|
12 |
+
--extra-index-url https://download.pytorch.org/whl/cu116
|
13 |
+
torch==1.13.1+cu116
|
14 |
+
torchvision==0.14.1+cu116
|
15 |
+
pytorch-lightning
|
16 |
+
smplx==0.1.28
|
17 |
+
opencv-python
|
18 |
+
yacs
|
19 |
+
scikit-image
|
20 |
+
einops
|
21 |
+
timm
|
22 |
+
OmegaConf
|
23 |
+
trimesh
|
24 |
+
pyopengl==3.1.0
|
25 |
+
pyglet
|
26 |
+
PyOpenGL
|
27 |
+
PyOpenGL_accelerate
|
28 |
+
numpy==1.23.3
|
29 |
+
shapely
|
setup.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from setuptools import setup, find_packages
|
2 |
+
|
3 |
+
print('Found packages:', find_packages())
|
4 |
+
setup(
|
5 |
+
description='HMR2 as a package',
|
6 |
+
name='hmr2',
|
7 |
+
packages=find_packages()
|
8 |
+
)
|
vendor/detectron2/.circleci/config.yml
ADDED
@@ -0,0 +1,271 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
version: 2.1
|
2 |
+
|
3 |
+
# -------------------------------------------------------------------------------------
|
4 |
+
# Environments to run the jobs in
|
5 |
+
# -------------------------------------------------------------------------------------
|
6 |
+
cpu: &cpu
|
7 |
+
machine:
|
8 |
+
image: ubuntu-2004:202107-02
|
9 |
+
resource_class: medium
|
10 |
+
|
11 |
+
gpu: &gpu
|
12 |
+
machine:
|
13 |
+
# NOTE: use a cuda version that's supported by all our pytorch versions
|
14 |
+
image: ubuntu-1604-cuda-11.1:202012-01
|
15 |
+
resource_class: gpu.nvidia.small
|
16 |
+
|
17 |
+
windows-cpu: &windows_cpu
|
18 |
+
machine:
|
19 |
+
resource_class: windows.medium
|
20 |
+
image: windows-server-2019-vs2019:stable
|
21 |
+
shell: powershell.exe
|
22 |
+
|
23 |
+
# windows-gpu: &windows_gpu
|
24 |
+
# machine:
|
25 |
+
# resource_class: windows.gpu.nvidia.medium
|
26 |
+
# image: windows-server-2019-nvidia:stable
|
27 |
+
|
28 |
+
version_parameters: &version_parameters
|
29 |
+
parameters:
|
30 |
+
pytorch_version:
|
31 |
+
type: string
|
32 |
+
torchvision_version:
|
33 |
+
type: string
|
34 |
+
pytorch_index:
|
35 |
+
type: string
|
36 |
+
# use test wheels index to have access to RC wheels
|
37 |
+
# https://download.pytorch.org/whl/test/torch_test.html
|
38 |
+
default: "https://download.pytorch.org/whl/torch_stable.html"
|
39 |
+
python_version: # NOTE: only affect linux
|
40 |
+
type: string
|
41 |
+
default: '3.8.6'
|
42 |
+
|
43 |
+
environment:
|
44 |
+
PYTORCH_VERSION: << parameters.pytorch_version >>
|
45 |
+
TORCHVISION_VERSION: << parameters.torchvision_version >>
|
46 |
+
PYTORCH_INDEX: << parameters.pytorch_index >>
|
47 |
+
PYTHON_VERSION: << parameters.python_version>>
|
48 |
+
# point datasets to ~/.torch so it's cached in CI
|
49 |
+
DETECTRON2_DATASETS: ~/.torch/datasets
|
50 |
+
|
51 |
+
# -------------------------------------------------------------------------------------
|
52 |
+
# Re-usable commands
|
53 |
+
# -------------------------------------------------------------------------------------
|
54 |
+
# install_nvidia_driver: &install_nvidia_driver
|
55 |
+
# - run:
|
56 |
+
# name: Install nvidia driver
|
57 |
+
# working_directory: ~/
|
58 |
+
# command: |
|
59 |
+
# wget -q 'https://s3.amazonaws.com/ossci-linux/nvidia_driver/NVIDIA-Linux-x86_64-430.40.run'
|
60 |
+
# sudo /bin/bash ./NVIDIA-Linux-x86_64-430.40.run -s --no-drm
|
61 |
+
# nvidia-smi
|
62 |
+
|
63 |
+
add_ssh_keys: &add_ssh_keys
|
64 |
+
# https://circleci.com/docs/2.0/add-ssh-key/
|
65 |
+
- add_ssh_keys:
|
66 |
+
fingerprints:
|
67 |
+
- "e4:13:f2:22:d4:49:e8:e4:57:5a:ac:20:2f:3f:1f:ca"
|
68 |
+
|
69 |
+
install_python: &install_python
|
70 |
+
- run:
|
71 |
+
name: Install Python
|
72 |
+
working_directory: ~/
|
73 |
+
command: |
|
74 |
+
# upgrade pyenv
|
75 |
+
cd /opt/circleci/.pyenv/plugins/python-build/../.. && git pull && cd -
|
76 |
+
pyenv install -s $PYTHON_VERSION
|
77 |
+
pyenv global $PYTHON_VERSION
|
78 |
+
python --version
|
79 |
+
which python
|
80 |
+
pip install --upgrade pip
|
81 |
+
|
82 |
+
setup_venv: &setup_venv
|
83 |
+
- run:
|
84 |
+
name: Setup Virtual Env
|
85 |
+
working_directory: ~/
|
86 |
+
command: |
|
87 |
+
python -m venv ~/venv
|
88 |
+
echo ". ~/venv/bin/activate" >> $BASH_ENV
|
89 |
+
. ~/venv/bin/activate
|
90 |
+
python --version
|
91 |
+
which python
|
92 |
+
which pip
|
93 |
+
pip install --upgrade pip
|
94 |
+
|
95 |
+
setup_venv_win: &setup_venv_win
|
96 |
+
- run:
|
97 |
+
name: Setup Virtual Env for Windows
|
98 |
+
command: |
|
99 |
+
pip install virtualenv
|
100 |
+
python -m virtualenv env
|
101 |
+
.\env\Scripts\activate
|
102 |
+
python --version
|
103 |
+
which python
|
104 |
+
which pip
|
105 |
+
|
106 |
+
install_linux_dep: &install_linux_dep
|
107 |
+
- run:
|
108 |
+
name: Install Dependencies
|
109 |
+
command: |
|
110 |
+
# disable crash coredump, so unittests fail fast
|
111 |
+
sudo systemctl stop apport.service
|
112 |
+
# install from github to get latest; install iopath first since fvcore depends on it
|
113 |
+
pip install --progress-bar off -U 'git+https://github.com/facebookresearch/iopath'
|
114 |
+
pip install --progress-bar off -U 'git+https://github.com/facebookresearch/fvcore'
|
115 |
+
# Don't use pytest-xdist: cuda tests are unstable under multi-process workers.
|
116 |
+
# Don't use opencv 4.7.0.68: https://github.com/opencv/opencv-python/issues/765
|
117 |
+
pip install --progress-bar off ninja opencv-python-headless!=4.7.0.68 pytest tensorboard pycocotools onnx
|
118 |
+
pip install --progress-bar off torch==$PYTORCH_VERSION -f $PYTORCH_INDEX
|
119 |
+
if [[ "$TORCHVISION_VERSION" == "master" ]]; then
|
120 |
+
pip install git+https://github.com/pytorch/vision.git
|
121 |
+
else
|
122 |
+
pip install --progress-bar off torchvision==$TORCHVISION_VERSION -f $PYTORCH_INDEX
|
123 |
+
fi
|
124 |
+
|
125 |
+
python -c 'import torch; print("CUDA:", torch.cuda.is_available())'
|
126 |
+
gcc --version
|
127 |
+
|
128 |
+
install_detectron2: &install_detectron2
|
129 |
+
- run:
|
130 |
+
name: Install Detectron2
|
131 |
+
command: |
|
132 |
+
# Remove first, in case it's in the CI cache
|
133 |
+
pip uninstall -y detectron2
|
134 |
+
|
135 |
+
pip install --progress-bar off -e .[all]
|
136 |
+
python -m detectron2.utils.collect_env
|
137 |
+
./datasets/prepare_for_tests.sh
|
138 |
+
|
139 |
+
run_unittests: &run_unittests
|
140 |
+
- run:
|
141 |
+
name: Run Unit Tests
|
142 |
+
command: |
|
143 |
+
pytest -sv --durations=15 tests # parallel causes some random failures
|
144 |
+
|
145 |
+
uninstall_tests: &uninstall_tests
|
146 |
+
- run:
|
147 |
+
name: Run Tests After Uninstalling
|
148 |
+
command: |
|
149 |
+
pip uninstall -y detectron2
|
150 |
+
# Remove built binaries
|
151 |
+
rm -rf build/ detectron2/*.so
|
152 |
+
# Tests that code is importable without installation
|
153 |
+
PYTHONPATH=. ./.circleci/import-tests.sh
|
154 |
+
|
155 |
+
|
156 |
+
# -------------------------------------------------------------------------------------
|
157 |
+
# Jobs to run
|
158 |
+
# -------------------------------------------------------------------------------------
|
159 |
+
jobs:
|
160 |
+
linux_cpu_tests:
|
161 |
+
<<: *cpu
|
162 |
+
<<: *version_parameters
|
163 |
+
|
164 |
+
working_directory: ~/detectron2
|
165 |
+
|
166 |
+
steps:
|
167 |
+
- checkout
|
168 |
+
|
169 |
+
# Cache the venv directory that contains python, dependencies, and checkpoints
|
170 |
+
# Refresh the key when dependencies should be updated (e.g. when pytorch releases)
|
171 |
+
- restore_cache:
|
172 |
+
keys:
|
173 |
+
- cache-{{ arch }}-<< parameters.pytorch_version >>-{{ .Branch }}-20210827
|
174 |
+
|
175 |
+
- <<: *install_python
|
176 |
+
- <<: *install_linux_dep
|
177 |
+
- <<: *install_detectron2
|
178 |
+
- <<: *run_unittests
|
179 |
+
- <<: *uninstall_tests
|
180 |
+
|
181 |
+
- save_cache:
|
182 |
+
paths:
|
183 |
+
- /opt/circleci/.pyenv
|
184 |
+
- ~/.torch
|
185 |
+
key: cache-{{ arch }}-<< parameters.pytorch_version >>-{{ .Branch }}-20210827
|
186 |
+
|
187 |
+
|
188 |
+
linux_gpu_tests:
|
189 |
+
<<: *gpu
|
190 |
+
<<: *version_parameters
|
191 |
+
|
192 |
+
working_directory: ~/detectron2
|
193 |
+
|
194 |
+
steps:
|
195 |
+
- checkout
|
196 |
+
|
197 |
+
- restore_cache:
|
198 |
+
keys:
|
199 |
+
- cache-{{ arch }}-<< parameters.pytorch_version >>-{{ .Branch }}-20210827
|
200 |
+
|
201 |
+
- <<: *install_python
|
202 |
+
- <<: *install_linux_dep
|
203 |
+
- <<: *install_detectron2
|
204 |
+
- <<: *run_unittests
|
205 |
+
- <<: *uninstall_tests
|
206 |
+
|
207 |
+
- save_cache:
|
208 |
+
paths:
|
209 |
+
- /opt/circleci/.pyenv
|
210 |
+
- ~/.torch
|
211 |
+
key: cache-{{ arch }}-<< parameters.pytorch_version >>-{{ .Branch }}-20210827
|
212 |
+
|
213 |
+
windows_cpu_build:
|
214 |
+
<<: *windows_cpu
|
215 |
+
<<: *version_parameters
|
216 |
+
steps:
|
217 |
+
- <<: *add_ssh_keys
|
218 |
+
- checkout
|
219 |
+
- <<: *setup_venv_win
|
220 |
+
|
221 |
+
# Cache the env directory that contains dependencies
|
222 |
+
- restore_cache:
|
223 |
+
keys:
|
224 |
+
- cache-{{ arch }}-<< parameters.pytorch_version >>-{{ .Branch }}-20210404
|
225 |
+
|
226 |
+
- run:
|
227 |
+
name: Install Dependencies
|
228 |
+
command: |
|
229 |
+
pip install certifi --ignore-installed # required on windows to workaround some cert issue
|
230 |
+
pip install numpy cython # required on windows before pycocotools
|
231 |
+
pip install opencv-python-headless pytest-xdist pycocotools tensorboard onnx
|
232 |
+
pip install -U git+https://github.com/facebookresearch/iopath
|
233 |
+
pip install -U git+https://github.com/facebookresearch/fvcore
|
234 |
+
pip install torch==$env:PYTORCH_VERSION torchvision==$env:TORCHVISION_VERSION -f $env:PYTORCH_INDEX
|
235 |
+
|
236 |
+
- save_cache:
|
237 |
+
paths:
|
238 |
+
- env
|
239 |
+
key: cache-{{ arch }}-<< parameters.pytorch_version >>-{{ .Branch }}-20210404
|
240 |
+
|
241 |
+
- <<: *install_detectron2
|
242 |
+
# TODO: unittest fails for now
|
243 |
+
|
244 |
+
workflows:
|
245 |
+
version: 2
|
246 |
+
regular_test:
|
247 |
+
jobs:
|
248 |
+
- linux_cpu_tests:
|
249 |
+
name: linux_cpu_tests_pytorch1.10
|
250 |
+
pytorch_version: '1.10.0+cpu'
|
251 |
+
torchvision_version: '0.11.1+cpu'
|
252 |
+
- linux_gpu_tests:
|
253 |
+
name: linux_gpu_tests_pytorch1.8
|
254 |
+
pytorch_version: '1.8.1+cu111'
|
255 |
+
torchvision_version: '0.9.1+cu111'
|
256 |
+
- linux_gpu_tests:
|
257 |
+
name: linux_gpu_tests_pytorch1.9
|
258 |
+
pytorch_version: '1.9+cu111'
|
259 |
+
torchvision_version: '0.10+cu111'
|
260 |
+
- linux_gpu_tests:
|
261 |
+
name: linux_gpu_tests_pytorch1.10
|
262 |
+
pytorch_version: '1.10+cu111'
|
263 |
+
torchvision_version: '0.11.1+cu111'
|
264 |
+
- linux_gpu_tests:
|
265 |
+
name: linux_gpu_tests_pytorch1.10_python39
|
266 |
+
pytorch_version: '1.10+cu111'
|
267 |
+
torchvision_version: '0.11.1+cu111'
|
268 |
+
python_version: '3.9.6'
|
269 |
+
- windows_cpu_build:
|
270 |
+
pytorch_version: '1.10+cpu'
|
271 |
+
torchvision_version: '0.11.1+cpu'
|
vendor/detectron2/.circleci/import-tests.sh
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash -e
|
2 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
3 |
+
|
4 |
+
# Test that import works without building detectron2.
|
5 |
+
|
6 |
+
# Check that _C is not importable
|
7 |
+
python -c "from detectron2 import _C" > /dev/null 2>&1 && {
|
8 |
+
echo "This test should be run without building detectron2."
|
9 |
+
exit 1
|
10 |
+
}
|
11 |
+
|
12 |
+
# Check that other modules are still importable, even when _C is not importable
|
13 |
+
python -c "from detectron2 import modeling"
|
14 |
+
python -c "from detectron2 import modeling, data"
|
15 |
+
python -c "from detectron2 import evaluation, export, checkpoint"
|
16 |
+
python -c "from detectron2 import utils, engine"
|
vendor/detectron2/.clang-format
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
AccessModifierOffset: -1
|
2 |
+
AlignAfterOpenBracket: AlwaysBreak
|
3 |
+
AlignConsecutiveAssignments: false
|
4 |
+
AlignConsecutiveDeclarations: false
|
5 |
+
AlignEscapedNewlinesLeft: true
|
6 |
+
AlignOperands: false
|
7 |
+
AlignTrailingComments: false
|
8 |
+
AllowAllParametersOfDeclarationOnNextLine: false
|
9 |
+
AllowShortBlocksOnASingleLine: false
|
10 |
+
AllowShortCaseLabelsOnASingleLine: false
|
11 |
+
AllowShortFunctionsOnASingleLine: Empty
|
12 |
+
AllowShortIfStatementsOnASingleLine: false
|
13 |
+
AllowShortLoopsOnASingleLine: false
|
14 |
+
AlwaysBreakAfterReturnType: None
|
15 |
+
AlwaysBreakBeforeMultilineStrings: true
|
16 |
+
AlwaysBreakTemplateDeclarations: true
|
17 |
+
BinPackArguments: false
|
18 |
+
BinPackParameters: false
|
19 |
+
BraceWrapping:
|
20 |
+
AfterClass: false
|
21 |
+
AfterControlStatement: false
|
22 |
+
AfterEnum: false
|
23 |
+
AfterFunction: false
|
24 |
+
AfterNamespace: false
|
25 |
+
AfterObjCDeclaration: false
|
26 |
+
AfterStruct: false
|
27 |
+
AfterUnion: false
|
28 |
+
BeforeCatch: false
|
29 |
+
BeforeElse: false
|
30 |
+
IndentBraces: false
|
31 |
+
BreakBeforeBinaryOperators: None
|
32 |
+
BreakBeforeBraces: Attach
|
33 |
+
BreakBeforeTernaryOperators: true
|
34 |
+
BreakConstructorInitializersBeforeComma: false
|
35 |
+
BreakAfterJavaFieldAnnotations: false
|
36 |
+
BreakStringLiterals: false
|
37 |
+
ColumnLimit: 80
|
38 |
+
CommentPragmas: '^ IWYU pragma:'
|
39 |
+
ConstructorInitializerAllOnOneLineOrOnePerLine: true
|
40 |
+
ConstructorInitializerIndentWidth: 4
|
41 |
+
ContinuationIndentWidth: 4
|
42 |
+
Cpp11BracedListStyle: true
|
43 |
+
DerivePointerAlignment: false
|
44 |
+
DisableFormat: false
|
45 |
+
ForEachMacros: [ FOR_EACH, FOR_EACH_R, FOR_EACH_RANGE, ]
|
46 |
+
IncludeCategories:
|
47 |
+
- Regex: '^<.*\.h(pp)?>'
|
48 |
+
Priority: 1
|
49 |
+
- Regex: '^<.*'
|
50 |
+
Priority: 2
|
51 |
+
- Regex: '.*'
|
52 |
+
Priority: 3
|
53 |
+
IndentCaseLabels: true
|
54 |
+
IndentWidth: 2
|
55 |
+
IndentWrappedFunctionNames: false
|
56 |
+
KeepEmptyLinesAtTheStartOfBlocks: false
|
57 |
+
MacroBlockBegin: ''
|
58 |
+
MacroBlockEnd: ''
|
59 |
+
MaxEmptyLinesToKeep: 1
|
60 |
+
NamespaceIndentation: None
|
61 |
+
ObjCBlockIndentWidth: 2
|
62 |
+
ObjCSpaceAfterProperty: false
|
63 |
+
ObjCSpaceBeforeProtocolList: false
|
64 |
+
PenaltyBreakBeforeFirstCallParameter: 1
|
65 |
+
PenaltyBreakComment: 300
|
66 |
+
PenaltyBreakFirstLessLess: 120
|
67 |
+
PenaltyBreakString: 1000
|
68 |
+
PenaltyExcessCharacter: 1000000
|
69 |
+
PenaltyReturnTypeOnItsOwnLine: 200
|
70 |
+
PointerAlignment: Left
|
71 |
+
ReflowComments: true
|
72 |
+
SortIncludes: true
|
73 |
+
SpaceAfterCStyleCast: false
|
74 |
+
SpaceBeforeAssignmentOperators: true
|
75 |
+
SpaceBeforeParens: ControlStatements
|
76 |
+
SpaceInEmptyParentheses: false
|
77 |
+
SpacesBeforeTrailingComments: 1
|
78 |
+
SpacesInAngles: false
|
79 |
+
SpacesInContainerLiterals: true
|
80 |
+
SpacesInCStyleCastParentheses: false
|
81 |
+
SpacesInParentheses: false
|
82 |
+
SpacesInSquareBrackets: false
|
83 |
+
Standard: Cpp11
|
84 |
+
TabWidth: 8
|
85 |
+
UseTab: Never
|
vendor/detectron2/.flake8
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This is an example .flake8 config, used when developing *Black* itself.
|
2 |
+
# Keep in sync with setup.cfg which is used for source packages.
|
3 |
+
|
4 |
+
[flake8]
|
5 |
+
ignore = W503, E203, E221, C901, C408, E741, C407, B017, F811, C101, EXE001, EXE002
|
6 |
+
max-line-length = 100
|
7 |
+
max-complexity = 18
|
8 |
+
select = B,C,E,F,W,T4,B9
|
9 |
+
exclude = build
|
10 |
+
per-file-ignores =
|
11 |
+
**/__init__.py:F401,F403,E402
|
12 |
+
**/configs/**.py:F401,E402
|
13 |
+
configs/**.py:F401,E402
|
14 |
+
**/tests/config/**.py:F401,E402
|
15 |
+
tests/config/**.py:F401,E402
|
vendor/detectron2/.github/CODE_OF_CONDUCT.md
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Code of Conduct
|
2 |
+
|
3 |
+
Facebook has adopted a Code of Conduct that we expect project participants to adhere to.
|
4 |
+
Please read the [full text](https://code.fb.com/codeofconduct/)
|
5 |
+
so that you can understand what actions will and will not be tolerated.
|
vendor/detectron2/.github/CONTRIBUTING.md
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Contributing to detectron2
|
2 |
+
|
3 |
+
## Issues
|
4 |
+
We use GitHub issues to track public bugs and questions.
|
5 |
+
Please make sure to follow one of the
|
6 |
+
[issue templates](https://github.com/facebookresearch/detectron2/issues/new/choose)
|
7 |
+
when reporting any issues.
|
8 |
+
|
9 |
+
Facebook has a [bounty program](https://www.facebook.com/whitehat/) for the safe
|
10 |
+
disclosure of security bugs. In those cases, please go through the process
|
11 |
+
outlined on that page and do not file a public issue.
|
12 |
+
|
13 |
+
## Pull Requests
|
14 |
+
We actively welcome pull requests.
|
15 |
+
|
16 |
+
However, if you're adding any significant features (e.g. > 50 lines), please
|
17 |
+
make sure to discuss with maintainers about your motivation and proposals in an issue
|
18 |
+
before sending a PR. This is to save your time so you don't spend time on a PR that we'll not accept.
|
19 |
+
|
20 |
+
We do not always accept new features, and we take the following
|
21 |
+
factors into consideration:
|
22 |
+
|
23 |
+
1. Whether the same feature can be achieved without modifying detectron2.
|
24 |
+
Detectron2 is designed so that you can implement many extensions from the outside, e.g.
|
25 |
+
those in [projects](https://github.com/facebookresearch/detectron2/tree/master/projects).
|
26 |
+
* If some part of detectron2 is not extensible enough, you can also bring up a more general issue to
|
27 |
+
improve it. Such feature request may be useful to more users.
|
28 |
+
2. Whether the feature is potentially useful to a large audience (e.g. an impactful detection paper, a popular dataset,
|
29 |
+
a significant speedup, a widely useful utility),
|
30 |
+
or only to a small portion of users (e.g., a less-known paper, an improvement not in the object
|
31 |
+
detection field, a trick that's not very popular in the community, code to handle a non-standard type of data)
|
32 |
+
* Adoption of additional models, datasets, new task are by default not added to detectron2 before they
|
33 |
+
receive significant popularity in the community.
|
34 |
+
We sometimes accept such features in `projects/`, or as a link in `projects/README.md`.
|
35 |
+
3. Whether the proposed solution has a good design / interface. This can be discussed in the issue prior to PRs, or
|
36 |
+
in the form of a draft PR.
|
37 |
+
4. Whether the proposed solution adds extra mental/practical overhead to users who don't
|
38 |
+
need such feature.
|
39 |
+
5. Whether the proposed solution breaks existing APIs.
|
40 |
+
|
41 |
+
To add a feature to an existing function/class `Func`, there are always two approaches:
|
42 |
+
(1) add new arguments to `Func`; (2) write a new `Func_with_new_feature`.
|
43 |
+
To meet the above criteria, we often prefer approach (2), because:
|
44 |
+
|
45 |
+
1. It does not involve modifying or potentially breaking existing code.
|
46 |
+
2. It does not add overhead to users who do not need the new feature.
|
47 |
+
3. Adding new arguments to a function/class is not scalable w.r.t. all the possible new research ideas in the future.
|
48 |
+
|
49 |
+
When sending a PR, please do:
|
50 |
+
|
51 |
+
1. If a PR contains multiple orthogonal changes, split it to several PRs.
|
52 |
+
2. If you've added code that should be tested, add tests.
|
53 |
+
3. For PRs that need experiments (e.g. adding a new model or new methods),
|
54 |
+
you don't need to update model zoo, but do provide experiment results in the description of the PR.
|
55 |
+
4. If APIs are changed, update the documentation.
|
56 |
+
5. We use the [Google style docstrings](https://www.sphinx-doc.org/en/master/usage/extensions/napoleon.html) in python.
|
57 |
+
6. Make sure your code lints with `./dev/linter.sh`.
|
58 |
+
|
59 |
+
|
60 |
+
## Contributor License Agreement ("CLA")
|
61 |
+
In order to accept your pull request, we need you to submit a CLA. You only need
|
62 |
+
to do this once to work on any of Facebook's open source projects.
|
63 |
+
|
64 |
+
Complete your CLA here: <https://code.facebook.com/cla>
|
65 |
+
|
66 |
+
## License
|
67 |
+
By contributing to detectron2, you agree that your contributions will be licensed
|
68 |
+
under the LICENSE file in the root directory of this source tree.
|
vendor/detectron2/.github/Detectron2-Logo-Horz.svg
ADDED
vendor/detectron2/.github/ISSUE_TEMPLATE.md
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
Please select an issue template from
|
3 |
+
https://github.com/facebookresearch/detectron2/issues/new/choose .
|
4 |
+
|
5 |
+
Otherwise your issue will be closed.
|
vendor/detectron2/.github/ISSUE_TEMPLATE/bugs.md
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
name: "π Bugs"
|
3 |
+
about: Report bugs in detectron2
|
4 |
+
title: Please read & provide the following
|
5 |
+
|
6 |
+
---
|
7 |
+
|
8 |
+
## Instructions To Reproduce the π Bug:
|
9 |
+
1. Full runnable code or full changes you made:
|
10 |
+
```
|
11 |
+
If making changes to the project itself, please use output of the following command:
|
12 |
+
git rev-parse HEAD; git diff
|
13 |
+
|
14 |
+
<put code or diff here>
|
15 |
+
```
|
16 |
+
2. What exact command you run:
|
17 |
+
3. __Full logs__ or other relevant observations:
|
18 |
+
```
|
19 |
+
<put logs here>
|
20 |
+
```
|
21 |
+
4. please simplify the steps as much as possible so they do not require additional resources to
|
22 |
+
run, such as a private dataset.
|
23 |
+
|
24 |
+
## Expected behavior:
|
25 |
+
|
26 |
+
If there are no obvious error in "full logs" provided above,
|
27 |
+
please tell us the expected behavior.
|
28 |
+
|
29 |
+
## Environment:
|
30 |
+
|
31 |
+
Provide your environment information using the following command:
|
32 |
+
```
|
33 |
+
wget -nc -q https://github.com/facebookresearch/detectron2/raw/main/detectron2/utils/collect_env.py && python collect_env.py
|
34 |
+
```
|
35 |
+
|
36 |
+
If your issue looks like an installation issue / environment issue,
|
37 |
+
please first try to solve it yourself with the instructions in
|
38 |
+
https://detectron2.readthedocs.io/tutorials/install.html#common-installation-issues
|
vendor/detectron2/.github/ISSUE_TEMPLATE/config.yml
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# require an issue template to be chosen
|
2 |
+
blank_issues_enabled: false
|
3 |
+
|
4 |
+
contact_links:
|
5 |
+
- name: How-To / All Other Questions
|
6 |
+
url: https://github.com/facebookresearch/detectron2/discussions
|
7 |
+
about: Use "github discussions" for community support on general questions that don't belong to the above issue categories
|
8 |
+
- name: Detectron2 Documentation
|
9 |
+
url: https://detectron2.readthedocs.io/index.html
|
10 |
+
about: Check if your question is answered in tutorials or API docs
|
11 |
+
|
12 |
+
# Unexpected behaviors & bugs are split to two templates.
|
13 |
+
# When they are one template, users think "it's not a bug" and don't choose the template.
|
14 |
+
#
|
15 |
+
# But the file name is still "unexpected-problems-bugs.md" so that old references
|
16 |
+
# to this issue template still works.
|
17 |
+
# It's ok since this template should be a superset of "bugs.md" (unexpected behaviors is a superset of bugs)
|
vendor/detectron2/.github/ISSUE_TEMPLATE/documentation.md
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
name: "\U0001F4DA Documentation Issue"
|
3 |
+
about: Report a problem about existing documentation, comments, website or tutorials.
|
4 |
+
labels: documentation
|
5 |
+
|
6 |
+
---
|
7 |
+
|
8 |
+
## π Documentation Issue
|
9 |
+
|
10 |
+
This issue category is for problems about existing documentation, not for asking how-to questions.
|
11 |
+
|
12 |
+
* Provide a link to an existing documentation/comment/tutorial:
|
13 |
+
|
14 |
+
* How should the above documentation/comment/tutorial improve:
|
vendor/detectron2/.github/ISSUE_TEMPLATE/feature-request.md
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
name: "\U0001F680Feature Request"
|
3 |
+
about: Suggest an improvement or new feature
|
4 |
+
labels: enhancement
|
5 |
+
|
6 |
+
---
|
7 |
+
|
8 |
+
## π Feature
|
9 |
+
A clear and concise description of the feature proposal.
|
10 |
+
|
11 |
+
## Motivation & Examples
|
12 |
+
|
13 |
+
Tell us why the feature is useful.
|
14 |
+
|
15 |
+
Describe what the feature would look like, if it is implemented.
|
16 |
+
Best demonstrated using **code examples** in addition to words.
|
17 |
+
|
18 |
+
## Note
|
19 |
+
|
20 |
+
We only consider adding new features if they are relevant to many users.
|
21 |
+
|
22 |
+
If you request implementation of research papers -- we only consider papers that have enough significance and prevalance in the object detection field.
|
23 |
+
|
24 |
+
We do not take requests for most projects in the `projects/` directory, because they are research code release that is mainly for other researchers to reproduce results.
|
25 |
+
|
26 |
+
"Make X faster/accurate" is not a valid feature request. "Implement a concrete feature that can make X faster/accurate" can be a valid feature request.
|
27 |
+
|
28 |
+
Instead of adding features inside detectron2,
|
29 |
+
you can implement many features by [extending detectron2](https://detectron2.readthedocs.io/tutorials/extend.html).
|
30 |
+
The [projects/](https://github.com/facebookresearch/detectron2/tree/main/projects/) directory contains many of such examples.
|
31 |
+
|