import torch import torch.nn as nn class Discriminator(nn.Module): def __init__(self): """ Pose + Shape discriminator proposed in HMR """ super(Discriminator, self).__init__() self.num_joints = 23 # poses_alone self.D_conv1 = nn.Conv2d(9, 32, kernel_size=1) nn.init.xavier_uniform_(self.D_conv1.weight) nn.init.zeros_(self.D_conv1.bias) self.relu = nn.ReLU(inplace=True) self.D_conv2 = nn.Conv2d(32, 32, kernel_size=1) nn.init.xavier_uniform_(self.D_conv2.weight) nn.init.zeros_(self.D_conv2.bias) pose_out = [] for i in range(self.num_joints): pose_out_temp = nn.Linear(32, 1) nn.init.xavier_uniform_(pose_out_temp.weight) nn.init.zeros_(pose_out_temp.bias) pose_out.append(pose_out_temp) self.pose_out = nn.ModuleList(pose_out) # betas self.betas_fc1 = nn.Linear(10, 10) nn.init.xavier_uniform_(self.betas_fc1.weight) nn.init.zeros_(self.betas_fc1.bias) self.betas_fc2 = nn.Linear(10, 5) nn.init.xavier_uniform_(self.betas_fc2.weight) nn.init.zeros_(self.betas_fc2.bias) self.betas_out = nn.Linear(5, 1) nn.init.xavier_uniform_(self.betas_out.weight) nn.init.zeros_(self.betas_out.bias) # poses_joint self.D_alljoints_fc1 = nn.Linear(32*self.num_joints, 1024) nn.init.xavier_uniform_(self.D_alljoints_fc1.weight) nn.init.zeros_(self.D_alljoints_fc1.bias) self.D_alljoints_fc2 = nn.Linear(1024, 1024) nn.init.xavier_uniform_(self.D_alljoints_fc2.weight) nn.init.zeros_(self.D_alljoints_fc2.bias) self.D_alljoints_out = nn.Linear(1024, 1) nn.init.xavier_uniform_(self.D_alljoints_out.weight) nn.init.zeros_(self.D_alljoints_out.bias) def forward(self, poses: torch.Tensor, betas: torch.Tensor) -> torch.Tensor: """ Forward pass of the discriminator. Args: poses (torch.Tensor): Tensor of shape (B, 23, 3, 3) containing a batch of SMPL body poses (excluding the global orientation). betas (torch.Tensor): Tensor of shape (B, 10) containign a batch of SMPL beta coefficients. Returns: torch.Tensor: Discriminator output with shape (B, 25) """ #import ipdb; ipdb.set_trace() #bn = poses.shape[0] # poses B x 207 #poses = poses.reshape(bn, -1) # poses B x num_joints x 1 x 9 poses = poses.reshape(-1, self.num_joints, 1, 9) bn = poses.shape[0] # poses B x 9 x num_joints x 1 poses = poses.permute(0, 3, 1, 2).contiguous() # poses_alone poses = self.D_conv1(poses) poses = self.relu(poses) poses = self.D_conv2(poses) poses = self.relu(poses) poses_out = [] for i in range(self.num_joints): poses_out_ = self.pose_out[i](poses[:, :, i, 0]) poses_out.append(poses_out_) poses_out = torch.cat(poses_out, dim=1) # betas betas = self.betas_fc1(betas) betas = self.relu(betas) betas = self.betas_fc2(betas) betas = self.relu(betas) betas_out = self.betas_out(betas) # poses_joint poses = poses.reshape(bn,-1) poses_all = self.D_alljoints_fc1(poses) poses_all = self.relu(poses_all) poses_all = self.D_alljoints_fc2(poses_all) poses_all = self.relu(poses_all) poses_all_out = self.D_alljoints_out(poses_all) disc_out = torch.cat((poses_out, betas_out, poses_all_out), 1) return disc_out