import torch import torch.nn as nn import torch.nn.functional as F import numpy as np import einops from ...utils.geometry import rot6d_to_rotmat, aa_to_rotmat from ..components.pose_transformer import TransformerDecoder def build_smpl_head(cfg): smpl_head_type = cfg.MODEL.SMPL_HEAD.get('TYPE', 'hmr') if smpl_head_type == 'transformer_decoder': return SMPLTransformerDecoderHead(cfg) else: raise ValueError('Unknown SMPL head type: {}'.format(smpl_head_type)) class SMPLTransformerDecoderHead(nn.Module): """ Cross-attention based SMPL Transformer decoder """ def __init__(self, cfg): super().__init__() self.cfg = cfg self.joint_rep_type = cfg.MODEL.SMPL_HEAD.get('JOINT_REP', '6d') self.joint_rep_dim = {'6d': 6, 'aa': 3}[self.joint_rep_type] npose = self.joint_rep_dim * (cfg.SMPL.NUM_BODY_JOINTS + 1) self.npose = npose self.input_is_mean_shape = cfg.MODEL.SMPL_HEAD.get('TRANSFORMER_INPUT', 'zero') == 'mean_shape' transformer_args = dict( num_tokens=1, token_dim=(npose + 10 + 3) if self.input_is_mean_shape else 1, dim=1024, ) transformer_args = (transformer_args | dict(cfg.MODEL.SMPL_HEAD.TRANSFORMER_DECODER)) self.transformer = TransformerDecoder( **transformer_args ) dim=transformer_args['dim'] self.decpose = nn.Linear(dim, npose) self.decshape = nn.Linear(dim, 10) self.deccam = nn.Linear(dim, 3) if cfg.MODEL.SMPL_HEAD.get('INIT_DECODER_XAVIER', False): # True by default in MLP. False by default in Transformer nn.init.xavier_uniform_(self.decpose.weight, gain=0.01) nn.init.xavier_uniform_(self.decshape.weight, gain=0.01) nn.init.xavier_uniform_(self.deccam.weight, gain=0.01) mean_params = np.load(cfg.SMPL.MEAN_PARAMS) init_body_pose = torch.from_numpy(mean_params['pose'].astype(np.float32)).unsqueeze(0) init_betas = torch.from_numpy(mean_params['shape'].astype('float32')).unsqueeze(0) init_cam = torch.from_numpy(mean_params['cam'].astype(np.float32)).unsqueeze(0) self.register_buffer('init_body_pose', init_body_pose) self.register_buffer('init_betas', init_betas) self.register_buffer('init_cam', init_cam) def forward(self, x, **kwargs): batch_size = x.shape[0] # vit pretrained backbone is channel-first. Change to token-first x = einops.rearrange(x, 'b c h w -> b (h w) c') init_body_pose = self.init_body_pose.expand(batch_size, -1) init_betas = self.init_betas.expand(batch_size, -1) init_cam = self.init_cam.expand(batch_size, -1) # TODO: Convert init_body_pose to aa rep if needed if self.joint_rep_type == 'aa': raise NotImplementedError pred_body_pose = init_body_pose pred_betas = init_betas pred_cam = init_cam pred_body_pose_list = [] pred_betas_list = [] pred_cam_list = [] for i in range(self.cfg.MODEL.SMPL_HEAD.get('IEF_ITERS', 1)): # Input token to transformer is zero token if self.input_is_mean_shape: token = torch.cat([pred_body_pose, pred_betas, pred_cam], dim=1)[:,None,:] else: token = torch.zeros(batch_size, 1, 1).to(x.device) # Pass through transformer token_out = self.transformer(token, context=x) token_out = token_out.squeeze(1) # (B, C) # Readout from token_out pred_body_pose = self.decpose(token_out) + pred_body_pose pred_betas = self.decshape(token_out) + pred_betas pred_cam = self.deccam(token_out) + pred_cam pred_body_pose_list.append(pred_body_pose) pred_betas_list.append(pred_betas) pred_cam_list.append(pred_cam) # Convert self.joint_rep_type -> rotmat joint_conversion_fn = { '6d': rot6d_to_rotmat, 'aa': lambda x: aa_to_rotmat(x.view(-1, 3).contiguous()) }[self.joint_rep_type] pred_smpl_params_list = {} pred_smpl_params_list['body_pose'] = torch.cat([joint_conversion_fn(pbp).view(batch_size, -1, 3, 3)[:, 1:, :, :] for pbp in pred_body_pose_list], dim=0) pred_smpl_params_list['betas'] = torch.cat(pred_betas_list, dim=0) pred_smpl_params_list['cam'] = torch.cat(pred_cam_list, dim=0) pred_body_pose = joint_conversion_fn(pred_body_pose).view(batch_size, self.cfg.SMPL.NUM_BODY_JOINTS+1, 3, 3) pred_smpl_params = {'global_orient': pred_body_pose[:, [0]], 'body_pose': pred_body_pose[:, 1:], 'betas': pred_betas} return pred_smpl_params, pred_cam, pred_smpl_params_list