import torch import numpy as np import pickle from typing import Optional import smplx from smplx.lbs import vertices2joints from smplx.utils import SMPLOutput class SMPL(smplx.SMPLLayer): def __init__(self, *args, joint_regressor_extra: Optional[str] = None, update_hips: bool = False, **kwargs): """ Extension of the official SMPL implementation to support more joints. Args: Same as SMPLLayer. joint_regressor_extra (str): Path to extra joint regressor. """ super(SMPL, self).__init__(*args, **kwargs) smpl_to_openpose = [24, 12, 17, 19, 21, 16, 18, 20, 0, 2, 5, 8, 1, 4, 7, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34] if joint_regressor_extra is not None: self.register_buffer('joint_regressor_extra', torch.tensor(pickle.load(open(joint_regressor_extra, 'rb'), encoding='latin1'), dtype=torch.float32)) self.register_buffer('joint_map', torch.tensor(smpl_to_openpose, dtype=torch.long)) self.update_hips = update_hips def forward(self, *args, **kwargs) -> SMPLOutput: """ Run forward pass. Same as SMPL and also append an extra set of joints if joint_regressor_extra is specified. """ smpl_output = super(SMPL, self).forward(*args, **kwargs) joints = smpl_output.joints[:, self.joint_map, :] if self.update_hips: joints[:,[9,12]] = joints[:,[9,12]] + \ 0.25*(joints[:,[9,12]]-joints[:,[12,9]]) + \ 0.5*(joints[:,[8]] - 0.5*(joints[:,[9,12]] + joints[:,[12,9]])) if hasattr(self, 'joint_regressor_extra'): extra_joints = vertices2joints(self.joint_regressor_extra, smpl_output.vertices) joints = torch.cat([joints, extra_joints], dim=1) smpl_output.joints = joints return smpl_output