File size: 3,649 Bytes
9c9ed59
 
b62cff3
9c9ed59
 
 
8055050
 
 
9c9ed59
 
 
 
 
 
 
 
 
7d0b562
9c9ed59
7d0b562
9c9ed59
 
 
 
 
 
 
 
 
 
 
 
 
 
ca677a9
9c9ed59
 
 
 
 
 
 
7d0b562
 
 
 
9c9ed59
 
ca677a9
 
 
 
 
9c9ed59
 
 
 
 
 
 
 
 
4f3177e
9c9ed59
 
9bae30a
9c9ed59
4f3177e
9c9ed59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d0b562
 
 
f791e50
7d0b562
1afe06d
 
 
 
 
 
 
9c9ed59
f791e50
 
 
 
 
 
 
 
 
 
8055050
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
from huggingface_hub import InferenceClient
import gradio as gr
import prompts
client = InferenceClient(
    "mistralai/Mixtral-8x7B-Instruct-v0.1"
)



def format_prompt(message, history):
  prompt = "<s>"
  for user_prompt, bot_response in history:
    prompt += f"[INST] {user_prompt} [/INST]"
    prompt += f" {bot_response}</s> "
  prompt += f"[INST] {message} [/INST]"
  return prompt

def generate(
        prompt, history, system_prompt, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0, agent=None,
):
    system_prompt=prompts.{agent}
    temperature = float(temperature)
    if temperature < 1e-2:
        temperature = 1e-2
    top_p = float(top_p)

    generate_kwargs = dict(
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        seed=42,
    )

    formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
    stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
    output = ""

    for response in stream:
        output += response.token.text
        yield output
    return output
agents =[
    "WEB_DEV",
    "AI_SYSTEM_PROMPT",
]

additional_inputs=[
    gr.Textbox(
        label="System Prompt",
        max_lines=1,
        interactive=True,
    ),
    gr.Slider(
        label="Temperature",
        value=0.9,
        minimum=0.0,
        maximum=1.0,
        step=0.05,
        interactive=True,
        info="Higher values produce more diverse outputs",
    ),

    gr.Slider(
        label="Max new tokens",
        value=1048*10,
        minimum=0,
        maximum=1048*10,
        step=64,
        interactive=True,
        info="The maximum numbers of new tokens",
    ),
    gr.Slider(
        label="Top-p (nucleus sampling)",
        value=0.90,
        minimum=0.0,
        maximum=1,
        step=0.05,
        interactive=True,
        info="Higher values sample more low-probability tokens",
    ),
    gr.Slider(
        label="Repetition penalty",
        value=1.2,
        minimum=1.0,
        maximum=2.0,
        step=0.05,
        interactive=True,
        info="Penalize repeated tokens",
    ),
    gr.Dropdown(choices=[s for s in agents]),

]

examples=[["I'm planning a vacation to Japan. Can you suggest a one-week itinerary including must-visit places and local cuisines to try?", None, None, None, None, None, ],
          ["Can you write a short story about a time-traveling detective who solves historical mysteries?", None, None, None, None, None,],
          ["I'm trying to learn French. Can you provide some common phrases that would be useful for a beginner, along with their pronunciations?", None, None, None, None, None,],
          ["I have chicken, rice, and bell peppers in my kitchen. Can you suggest an easy recipe I can make with these ingredients?", None, None, None, None, None,],
          ["Can you explain how the QuickSort algorithm works and provide a Python implementation?", None, None, None, None, None,],
          ["What are some unique features of Rust that make it stand out compared to other systems programming languages like C++?", None, None, None, None, None,],
         ]

with gr.Blocks() as iface:
    gr.ChatInterface(
        fn=generate,
        chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
        additional_inputs=additional_inputs,
        title="Mixtral 46.7B",
        examples=examples,
        concurrency_limit=20,
    )
iface.launch(show_api=False)