Can select and visualizing results from cropping, stretching or tiling images
Browse files
app.py
CHANGED
@@ -18,12 +18,43 @@ from CLIP_Explainability.vit_cam import (
|
|
18 |
vit_perword_relevance,
|
19 |
) # , interpret_vit_overlapped
|
20 |
|
21 |
-
MAX_IMG_WIDTH =
|
22 |
MAX_IMG_HEIGHT = 800
|
23 |
|
24 |
st.set_page_config(layout="wide")
|
25 |
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
def init():
|
28 |
st.session_state.current_page = 1
|
29 |
|
@@ -34,74 +65,51 @@ def init():
|
|
34 |
ml_model_name = "M-CLIP/XLM-Roberta-Large-Vit-B-16Plus"
|
35 |
ml_model_path = "./models/vit_b_16_plus_240-laion400m_e32-699c4b84.pt"
|
36 |
|
37 |
-
st.
|
38 |
-
|
39 |
-
|
|
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
|
46 |
-
|
47 |
-
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
-
|
61 |
|
|
|
62 |
st.session_state.search_image_ids = []
|
63 |
st.session_state.search_image_scores = {}
|
64 |
st.session_state.activations_image = None
|
65 |
st.session_state.text_table_df = None
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
st.session_state.images_info.set_index("filename", inplace=True)
|
70 |
-
|
71 |
-
st.session_state.image_ids = list(
|
72 |
-
open("./images_list.txt", "r", encoding="utf-8").read().strip().split("\n")
|
73 |
-
)
|
74 |
-
|
75 |
-
# Load the image feature vectors
|
76 |
-
# ml_image_features = np.load("./multilingual_features.npy")
|
77 |
-
# ja_image_features = np.load("./hakuhodo_features.npy")
|
78 |
-
ml_image_features = np.load("./resized_ml_features.npy")
|
79 |
-
ja_image_features = np.load("./resized_ja_features.npy")
|
80 |
-
# ml_image_features = np.load("./tiled_ml_features.npy")
|
81 |
-
# ja_image_features = np.load("./tiled_ja_features.npy")
|
82 |
-
|
83 |
-
# Convert features to Tensors: Float32 on CPU and Float16 on GPU
|
84 |
-
if device == "cpu":
|
85 |
-
ml_image_features = torch.from_numpy(ml_image_features).float().to(device)
|
86 |
-
ja_image_features = torch.from_numpy(ja_image_features).float().to(device)
|
87 |
-
else:
|
88 |
-
ml_image_features = torch.from_numpy(ml_image_features).to(device)
|
89 |
-
ja_image_features = torch.from_numpy(ja_image_features).to(device)
|
90 |
-
|
91 |
-
st.session_state.ml_image_features = ml_image_features / ml_image_features.norm(
|
92 |
-
dim=-1, keepdim=True
|
93 |
-
)
|
94 |
-
st.session_state.ja_image_features = ja_image_features / ja_image_features.norm(
|
95 |
-
dim=-1, keepdim=True
|
96 |
-
)
|
97 |
|
98 |
|
99 |
-
if
|
100 |
-
|
101 |
-
or "ja_image_features" not in st.session_state
|
102 |
-
):
|
103 |
-
with st.spinner("Loading models and data, please wait..."):
|
104 |
-
init()
|
105 |
|
106 |
|
107 |
# The `encode_search_query` function takes a text description and encodes it into a feature vector using the CLIP model.
|
@@ -191,6 +199,7 @@ def visualize_gradcam(viz_image_id):
|
|
191 |
image_url = st.session_state.images_info.loc[viz_image_id]["image_url"]
|
192 |
image_response = requests.get(image_url)
|
193 |
image = Image.open(BytesIO(image_response.content), formats=["JPEG", "GIF"])
|
|
|
194 |
|
195 |
img_dim = 224
|
196 |
if st.session_state.active_model == "M-CLIP (multiple languages)":
|
@@ -198,62 +207,141 @@ def visualize_gradcam(viz_image_id):
|
|
198 |
|
199 |
orig_img_dims = image.size
|
200 |
|
201 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
|
203 |
if st.session_state.active_model == "M-CLIP (multiple languages)":
|
204 |
-
p_image = (
|
205 |
-
st.session_state.ml_image_preprocess(altered_image)
|
206 |
-
.unsqueeze(0)
|
207 |
-
.to(st.session_state.device)
|
208 |
-
)
|
209 |
-
|
210 |
# Sometimes used for token importance viz
|
211 |
tokenized_text = st.session_state.ml_tokenizer.tokenize(
|
212 |
st.session_state.search_field_value
|
213 |
)
|
214 |
-
image_model = st.session_state.ml_image_model
|
215 |
-
# tokenize = st.session_state.ml_tokenizer.tokenize
|
216 |
|
217 |
text_features = st.session_state.ml_model.forward(
|
218 |
st.session_state.search_field_value, st.session_state.ml_tokenizer
|
219 |
)
|
220 |
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
st.session_state.ml_image_model.visual,
|
225 |
-
st.session_state.device,
|
226 |
-
img_dim=img_dim,
|
227 |
-
)
|
228 |
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
|
|
|
|
235 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
236 |
# Sometimes used for token importance viz
|
237 |
tokenized_text = st.session_state.ja_tokenizer.tokenize(
|
238 |
st.session_state.search_field_value
|
239 |
)
|
240 |
-
image_model = st.session_state.ja_image_model
|
241 |
|
242 |
t_text = st.session_state.ja_tokenizer(
|
243 |
st.session_state.search_field_value, return_tensors="pt"
|
244 |
)
|
245 |
text_features = st.session_state.ja_model.get_text_features(**t_text)
|
246 |
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
254 |
|
255 |
transform = ToPILImage()
|
256 |
-
|
|
|
|
|
|
|
|
|
|
|
257 |
|
258 |
if orig_img_dims[0] > orig_img_dims[1]:
|
259 |
scale_factor = MAX_IMG_WIDTH / orig_img_dims[0]
|
@@ -262,14 +350,27 @@ def visualize_gradcam(viz_image_id):
|
|
262 |
scale_factor = MAX_IMG_HEIGHT / orig_img_dims[1]
|
263 |
scaled_dims = [int(orig_img_dims[0] * scale_factor), MAX_IMG_HEIGHT]
|
264 |
|
265 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
266 |
|
267 |
image_io = BytesIO()
|
268 |
st.session_state.activations_image.save(image_io, "PNG")
|
269 |
dataurl = "data:image/png;base64," + b64encode(image_io.getvalue()).decode("ascii")
|
270 |
|
271 |
st.html(
|
272 |
-
f"""<div style="display: flex; flex-direction: column; align-items: center">
|
273 |
<img src="{dataurl}" />
|
274 |
</div>"""
|
275 |
)
|
@@ -326,7 +427,11 @@ def visualize_gradcam(viz_image_id):
|
|
326 |
st.table(st.session_state.text_table_df)
|
327 |
|
328 |
|
329 |
-
|
|
|
|
|
|
|
|
|
330 |
def image_modal(vis_image_id):
|
331 |
visualize_gradcam(vis_image_id)
|
332 |
|
@@ -363,7 +468,7 @@ st.markdown(
|
|
363 |
unsafe_allow_html=True,
|
364 |
)
|
365 |
|
366 |
-
search_row = st.columns([45,
|
367 |
with search_row[0]:
|
368 |
search_field = st.text_input(
|
369 |
label="search",
|
@@ -379,8 +484,20 @@ with search_row[1]:
|
|
379 |
with search_row[2]:
|
380 |
st.empty()
|
381 |
with search_row[3]:
|
382 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
383 |
with search_row[4]:
|
|
|
|
|
|
|
|
|
384 |
st.radio(
|
385 |
"CLIP Model",
|
386 |
options=["M-CLIP (multiple languages)", "J-CLIP (日本語)"],
|
|
|
18 |
vit_perword_relevance,
|
19 |
) # , interpret_vit_overlapped
|
20 |
|
21 |
+
MAX_IMG_WIDTH = 500
|
22 |
MAX_IMG_HEIGHT = 800
|
23 |
|
24 |
st.set_page_config(layout="wide")
|
25 |
|
26 |
|
27 |
+
def load_image_features():
|
28 |
+
# Load the image feature vectors
|
29 |
+
if st.session_state.vision_mode == "tiled":
|
30 |
+
ml_image_features = np.load("./image_features/tiled_ml_features.npy")
|
31 |
+
ja_image_features = np.load("./image_features/tiled_ja_features.npy")
|
32 |
+
elif st.session_state.vision_mode == "stretched":
|
33 |
+
ml_image_features = np.load("./image_features/resized_ml_features.npy")
|
34 |
+
ja_image_features = np.load("./image_features/resized_ja_features.npy")
|
35 |
+
else: # st.session_state.vision_mode == "cropped":
|
36 |
+
ml_image_features = np.load("./image_features/cropped_ml_features.npy")
|
37 |
+
ja_image_features = np.load("./image_features/cropped_ja_features.npy")
|
38 |
+
|
39 |
+
# Convert features to Tensors: Float32 on CPU and Float16 on GPU
|
40 |
+
device = st.session_state.device
|
41 |
+
if device == "cpu":
|
42 |
+
ml_image_features = torch.from_numpy(ml_image_features).float().to(device)
|
43 |
+
ja_image_features = torch.from_numpy(ja_image_features).float().to(device)
|
44 |
+
else:
|
45 |
+
ml_image_features = torch.from_numpy(ml_image_features).to(device)
|
46 |
+
ja_image_features = torch.from_numpy(ja_image_features).to(device)
|
47 |
+
|
48 |
+
st.session_state.ml_image_features = ml_image_features / ml_image_features.norm(
|
49 |
+
dim=-1, keepdim=True
|
50 |
+
)
|
51 |
+
st.session_state.ja_image_features = ja_image_features / ja_image_features.norm(
|
52 |
+
dim=-1, keepdim=True
|
53 |
+
)
|
54 |
+
|
55 |
+
string_search()
|
56 |
+
|
57 |
+
|
58 |
def init():
|
59 |
st.session_state.current_page = 1
|
60 |
|
|
|
65 |
ml_model_name = "M-CLIP/XLM-Roberta-Large-Vit-B-16Plus"
|
66 |
ml_model_path = "./models/vit_b_16_plus_240-laion400m_e32-699c4b84.pt"
|
67 |
|
68 |
+
with st.spinner("Loading models and data, please wait..."):
|
69 |
+
st.session_state.ml_image_model, st.session_state.ml_image_preprocess = load(
|
70 |
+
ml_model_path, device=device, jit=False
|
71 |
+
)
|
72 |
|
73 |
+
st.session_state.ml_model = (
|
74 |
+
pt_multilingual_clip.MultilingualCLIP.from_pretrained(ml_model_name)
|
75 |
+
)
|
76 |
+
st.session_state.ml_tokenizer = AutoTokenizer.from_pretrained(ml_model_name)
|
77 |
|
78 |
+
ja_model_name = "hakuhodo-tech/japanese-clip-vit-h-14-bert-wider"
|
79 |
+
ja_model_path = "./models/ViT-H-14-laion2B-s32B-b79K.bin"
|
80 |
|
81 |
+
st.session_state.ja_image_model, st.session_state.ja_image_preprocess = load(
|
82 |
+
ja_model_path, device=device, jit=False
|
83 |
+
)
|
84 |
|
85 |
+
st.session_state.ja_model = AutoModel.from_pretrained(
|
86 |
+
ja_model_name, trust_remote_code=True
|
87 |
+
).to(device)
|
88 |
+
st.session_state.ja_tokenizer = AutoTokenizer.from_pretrained(
|
89 |
+
ja_model_name, trust_remote_code=True
|
90 |
+
)
|
91 |
+
|
92 |
+
# Load the image IDs
|
93 |
+
st.session_state.images_info = pd.read_csv("./metadata.csv")
|
94 |
+
st.session_state.images_info.set_index("filename", inplace=True)
|
95 |
+
|
96 |
+
with open("./images_list.txt", "r", encoding="utf-8") as images_list:
|
97 |
+
st.session_state.image_ids = list(images_list.read().strip().split("\n"))
|
98 |
|
99 |
+
st.session_state.active_model = "M-CLIP (multiple languages)"
|
100 |
|
101 |
+
st.session_state.vision_mode = "tiled"
|
102 |
st.session_state.search_image_ids = []
|
103 |
st.session_state.search_image_scores = {}
|
104 |
st.session_state.activations_image = None
|
105 |
st.session_state.text_table_df = None
|
106 |
|
107 |
+
with st.spinner("Loading models and data, please wait..."):
|
108 |
+
load_image_features()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
|
111 |
+
if "images_info" not in st.session_state:
|
112 |
+
init()
|
|
|
|
|
|
|
|
|
113 |
|
114 |
|
115 |
# The `encode_search_query` function takes a text description and encodes it into a feature vector using the CLIP model.
|
|
|
199 |
image_url = st.session_state.images_info.loc[viz_image_id]["image_url"]
|
200 |
image_response = requests.get(image_url)
|
201 |
image = Image.open(BytesIO(image_response.content), formats=["JPEG", "GIF"])
|
202 |
+
image = image.convert("RGB")
|
203 |
|
204 |
img_dim = 224
|
205 |
if st.session_state.active_model == "M-CLIP (multiple languages)":
|
|
|
207 |
|
208 |
orig_img_dims = image.size
|
209 |
|
210 |
+
##### If the features are based on tiled image slices
|
211 |
+
tile_behavior = None
|
212 |
+
|
213 |
+
if st.session_state.vision_mode == "tiled":
|
214 |
+
scaled_dims = [img_dim, img_dim]
|
215 |
+
|
216 |
+
if orig_img_dims[0] > orig_img_dims[1]:
|
217 |
+
scale_ratio = round(orig_img_dims[0] / orig_img_dims[1])
|
218 |
+
if scale_ratio > 1:
|
219 |
+
scaled_dims = [scale_ratio * img_dim, img_dim]
|
220 |
+
tile_behavior = "width"
|
221 |
+
elif orig_img_dims[0] < orig_img_dims[1]:
|
222 |
+
scale_ratio = round(orig_img_dims[1] / orig_img_dims[0])
|
223 |
+
if scale_ratio > 1:
|
224 |
+
scaled_dims = [img_dim, scale_ratio * img_dim]
|
225 |
+
tile_behavior = "height"
|
226 |
+
|
227 |
+
resized_image = image.resize(scaled_dims, Image.LANCZOS)
|
228 |
+
|
229 |
+
if tile_behavior == "width":
|
230 |
+
image_tiles = []
|
231 |
+
for x in range(0, scale_ratio):
|
232 |
+
box = (x * img_dim, 0, (x + 1) * img_dim, img_dim)
|
233 |
+
image_tiles.append(resized_image.crop(box))
|
234 |
+
|
235 |
+
elif tile_behavior == "height":
|
236 |
+
image_tiles = []
|
237 |
+
for y in range(0, scale_ratio):
|
238 |
+
box = (0, y * img_dim, img_dim, (y + 1) * img_dim)
|
239 |
+
image_tiles.append(resized_image.crop(box))
|
240 |
+
|
241 |
+
else:
|
242 |
+
image_tiles = [resized_image]
|
243 |
+
|
244 |
+
elif st.session_state.vision_mode == "stretched":
|
245 |
+
image_tiles = [image.resize((img_dim, img_dim), Image.LANCZOS)]
|
246 |
+
|
247 |
+
else: # vision_mode == "cropped"
|
248 |
+
if orig_img_dims[0] > orig_img_dims[1]:
|
249 |
+
scale_factor = orig_img_dims[0] / orig_img_dims[1]
|
250 |
+
resized_img_dims = (round(scale_factor * img_dim), img_dim)
|
251 |
+
resized_img = image.resize(resized_img_dims)
|
252 |
+
elif orig_img_dims[0] < orig_img_dims[1]:
|
253 |
+
scale_factor = orig_img_dims[1] / orig_img_dims[0]
|
254 |
+
resized_img_dims = (img_dim, round(scale_factor * img_dim))
|
255 |
+
else:
|
256 |
+
resized_img_dims = (img_dim, img_dim)
|
257 |
+
|
258 |
+
resized_img = image.resize(resized_img_dims)
|
259 |
+
|
260 |
+
left = round((resized_img_dims[0] - img_dim) / 2)
|
261 |
+
top = round((resized_img_dims[1] - img_dim) / 2)
|
262 |
+
x_right = round(resized_img_dims[0] - img_dim) - left
|
263 |
+
x_bottom = round(resized_img_dims[1] - img_dim) - top
|
264 |
+
right = resized_img_dims[0] - x_right
|
265 |
+
bottom = resized_img_dims[1] - x_bottom
|
266 |
+
|
267 |
+
# Crop the center of the image
|
268 |
+
image_tiles = [resized_img.crop((left, top, right, bottom))]
|
269 |
+
|
270 |
+
image_visualizations = []
|
271 |
|
272 |
if st.session_state.active_model == "M-CLIP (multiple languages)":
|
|
|
|
|
|
|
|
|
|
|
|
|
273 |
# Sometimes used for token importance viz
|
274 |
tokenized_text = st.session_state.ml_tokenizer.tokenize(
|
275 |
st.session_state.search_field_value
|
276 |
)
|
|
|
|
|
277 |
|
278 |
text_features = st.session_state.ml_model.forward(
|
279 |
st.session_state.search_field_value, st.session_state.ml_tokenizer
|
280 |
)
|
281 |
|
282 |
+
image_model = st.session_state.ml_image_model
|
283 |
+
# tokenize = st.session_state.ml_tokenizer.tokenize
|
284 |
+
image_model.eval()
|
|
|
|
|
|
|
|
|
285 |
|
286 |
+
for altered_image in image_tiles:
|
287 |
+
image_model.zero_grad()
|
288 |
+
|
289 |
+
p_image = (
|
290 |
+
st.session_state.ml_image_preprocess(altered_image)
|
291 |
+
.unsqueeze(0)
|
292 |
+
.to(st.session_state.device)
|
293 |
+
)
|
294 |
|
295 |
+
vis_t = interpret_vit(
|
296 |
+
p_image.type(st.session_state.ml_image_model.dtype),
|
297 |
+
text_features,
|
298 |
+
image_model.visual,
|
299 |
+
st.session_state.device,
|
300 |
+
img_dim=img_dim,
|
301 |
+
)
|
302 |
+
|
303 |
+
image_visualizations.append(vis_t)
|
304 |
+
|
305 |
+
else:
|
306 |
# Sometimes used for token importance viz
|
307 |
tokenized_text = st.session_state.ja_tokenizer.tokenize(
|
308 |
st.session_state.search_field_value
|
309 |
)
|
|
|
310 |
|
311 |
t_text = st.session_state.ja_tokenizer(
|
312 |
st.session_state.search_field_value, return_tensors="pt"
|
313 |
)
|
314 |
text_features = st.session_state.ja_model.get_text_features(**t_text)
|
315 |
|
316 |
+
image_model = st.session_state.ja_image_model
|
317 |
+
image_model.eval()
|
318 |
+
|
319 |
+
for altered_image in image_tiles:
|
320 |
+
image_model.zero_grad()
|
321 |
+
|
322 |
+
p_image = (
|
323 |
+
st.session_state.ja_image_preprocess(altered_image)
|
324 |
+
.unsqueeze(0)
|
325 |
+
.to(st.session_state.device)
|
326 |
+
)
|
327 |
+
|
328 |
+
vis_t = interpret_vit(
|
329 |
+
p_image.type(st.session_state.ja_image_model.dtype),
|
330 |
+
text_features,
|
331 |
+
image_model.visual,
|
332 |
+
st.session_state.device,
|
333 |
+
img_dim=img_dim,
|
334 |
+
)
|
335 |
+
|
336 |
+
image_visualizations.append(vis_t)
|
337 |
|
338 |
transform = ToPILImage()
|
339 |
+
|
340 |
+
vis_images = [transform(vis_t) for vis_t in image_visualizations]
|
341 |
+
|
342 |
+
if st.session_state.vision_mode == "cropped":
|
343 |
+
resized_img.paste(vis_images[0], (left, top))
|
344 |
+
vis_images = [resized_img]
|
345 |
|
346 |
if orig_img_dims[0] > orig_img_dims[1]:
|
347 |
scale_factor = MAX_IMG_WIDTH / orig_img_dims[0]
|
|
|
350 |
scale_factor = MAX_IMG_HEIGHT / orig_img_dims[1]
|
351 |
scaled_dims = [int(orig_img_dims[0] * scale_factor), MAX_IMG_HEIGHT]
|
352 |
|
353 |
+
if tile_behavior == "width":
|
354 |
+
vis_image = Image.new("RGB", (len(vis_images) * img_dim, img_dim))
|
355 |
+
for x, v_img in enumerate(vis_images):
|
356 |
+
vis_image.paste(v_img, (x * img_dim, 0))
|
357 |
+
st.session_state.activations_image = vis_image.resize(scaled_dims)
|
358 |
+
|
359 |
+
elif tile_behavior == "height":
|
360 |
+
vis_image = Image.new("RGB", (img_dim, len(vis_images) * img_dim))
|
361 |
+
for y, v_img in enumerate(vis_images):
|
362 |
+
vis_image.paste(v_img, (0, y * img_dim))
|
363 |
+
st.session_state.activations_image = vis_image.resize(scaled_dims)
|
364 |
+
|
365 |
+
else:
|
366 |
+
st.session_state.activations_image = vis_images[0].resize(scaled_dims)
|
367 |
|
368 |
image_io = BytesIO()
|
369 |
st.session_state.activations_image.save(image_io, "PNG")
|
370 |
dataurl = "data:image/png;base64," + b64encode(image_io.getvalue()).decode("ascii")
|
371 |
|
372 |
st.html(
|
373 |
+
f"""<div style="display: flex; flex-direction: column; align-items: center;">
|
374 |
<img src="{dataurl}" />
|
375 |
</div>"""
|
376 |
)
|
|
|
427 |
st.table(st.session_state.text_table_df)
|
428 |
|
429 |
|
430 |
+
def format_vision_mode(mode_stub):
|
431 |
+
return f"Vision mode: {mode_stub.capitalize()}"
|
432 |
+
|
433 |
+
|
434 |
+
@st.dialog(" ", width="large")
|
435 |
def image_modal(vis_image_id):
|
436 |
visualize_gradcam(vis_image_id)
|
437 |
|
|
|
468 |
unsafe_allow_html=True,
|
469 |
)
|
470 |
|
471 |
+
search_row = st.columns([45, 5, 1, 15, 1, 8, 25], vertical_alignment="center")
|
472 |
with search_row[0]:
|
473 |
search_field = st.text_input(
|
474 |
label="search",
|
|
|
484 |
with search_row[2]:
|
485 |
st.empty()
|
486 |
with search_row[3]:
|
487 |
+
st.selectbox(
|
488 |
+
"Vision mode:",
|
489 |
+
options=["tiled", "stretched", "cropped"],
|
490 |
+
key="vision_mode",
|
491 |
+
help="How to consider images that aren't square",
|
492 |
+
on_change=load_image_features,
|
493 |
+
format_func=format_vision_mode,
|
494 |
+
label_visibility="collapsed",
|
495 |
+
)
|
496 |
with search_row[4]:
|
497 |
+
st.empty()
|
498 |
+
with search_row[5]:
|
499 |
+
st.markdown("**CLIP Model:**")
|
500 |
+
with search_row[6]:
|
501 |
st.radio(
|
502 |
"CLIP Model",
|
503 |
options=["M-CLIP (multiple languages)", "J-CLIP (日本語)"],
|