File size: 15,196 Bytes
56cd3fd
 
1f7d8c9
1bff291
56cd3fd
1f7d8c9
 
 
 
 
 
 
 
56cd3fd
1f7d8c9
 
56cd3fd
1f7d8c9
 
 
 
 
56cd3fd
1f7d8c9
56cd3fd
 
fe631f4
1f7d8c9
 
 
 
56cd3fd
1f7d8c9
 
 
56cd3fd
 
1f7d8c9
56cd3fd
 
 
1f7d8c9
56cd3fd
 
 
 
 
 
 
 
 
 
 
1f7d8c9
56cd3fd
 
1f7d8c9
56cd3fd
 
 
 
 
 
 
 
 
 
 
 
 
21c2875
56cd3fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f7d8c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56cd3fd
 
 
1f7d8c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe631f4
1f7d8c9
 
 
395897a
1f7d8c9
395897a
1f7d8c9
395897a
 
1f7d8c9
395897a
56cd3fd
395897a
 
 
 
 
 
 
 
 
 
 
 
 
 
1f7d8c9
 
56cd3fd
1f7d8c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56cd3fd
1f7d8c9
 
56cd3fd
 
1f7d8c9
 
 
 
 
56cd3fd
1f7d8c9
 
 
56cd3fd
1f7d8c9
56cd3fd
1f7d8c9
56cd3fd
1f7d8c9
56cd3fd
1f7d8c9
 
 
 
56cd3fd
1f7d8c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56cd3fd
 
 
 
 
 
 
 
 
1f7d8c9
 
 
 
 
 
 
 
 
 
fe631f4
56cd3fd
fe631f4
 
 
 
 
 
 
 
 
 
 
 
 
 
56cd3fd
fe631f4
 
 
 
56cd3fd
fe631f4
 
 
 
 
 
 
 
 
 
56cd3fd
fe631f4
 
 
 
 
 
 
 
 
 
 
56cd3fd
fe631f4
 
1f7d8c9
 
 
1bff291
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
prod = False
port = 8080
show_options = False
if prod: 
    port = 8081
    # show_options = False

import os
import gc
import random
import time
import gradio as gr
import numpy as np
# import imageio
from huggingface_hub import HfApi
import torch
# import spaces
from PIL import Image
from diffusers import (
    ControlNetModel,
    DPMSolverMultistepScheduler,
    StableDiffusionControlNetPipeline,
    # AutoencoderKL,
)
from controlnet_aux_local import NormalBaeDetector
# from controlnet_aux import NormalBaeDetector
from diffusers.models.attention_processor import AttnProcessor2_0
MAX_SEED = np.iinfo(np.int32).max
API_KEY = os.environ.get("API_KEY", None)

print("CUDA version:", torch.version.cuda)
print("loading everything")
compiled = False
api = HfApi()

class Preprocessor:
    MODEL_ID = "lllyasviel/Annotators"

    def __init__(self):
        self.model = None
        self.name = ""

    def load(self, name: str) -> None:
        if name == self.name:
            return
        elif name == "NormalBae":
            print("Loading NormalBae")
            self.model = NormalBaeDetector.from_pretrained(self.MODEL_ID).to("cuda")
            torch.cuda.empty_cache()
            self.name = name
        else:
            raise ValueError
        return

    def __call__(self, image: Image.Image, **kwargs) -> Image.Image:
        return self.model(image, **kwargs)

# torch.cuda.max_memory_allocated(device="cuda")

# Controlnet Normal
model_id = "lllyasviel/control_v11p_sd15_normalbae"
print("initializing controlnet")
controlnet = ControlNetModel.from_pretrained(
    model_id,
    torch_dtype=torch.float16,
    attn_implementation="flash_attention_2",
).to("cuda")

# Scheduler
scheduler = DPMSolverMultistepScheduler.from_pretrained(
    "ashllay/stable-diffusion-v1-5-archive",
    solver_order=2,
    subfolder="scheduler",
    use_karras_sigmas=True,
    final_sigmas_type="sigma_min",
    algorithm_type="sde-dpmsolver++",
    prediction_type="epsilon",
    thresholding=False,
    denoise_final=True,
    device_map="cuda",
    torch_dtype=torch.float16,
)

# Stable Diffusion Pipeline URL
base_model_url = "https://huggingface.co/broyang/hentaidigitalart_v20/blob/main/realcartoon3d_v15.safetensors"
# base_model_url = "https://huggingface.co/Lykon/AbsoluteReality/blob/main/AbsoluteReality_1.8.1_pruned.safetensors"
# vae_url = "https://huggingface.co/stabilityai/sd-vae-ft-mse-original/blob/main/vae-ft-mse-840000-ema-pruned.safetensors"

# print('loading vae')
# vae = AutoencoderKL.from_single_file(vae_url, torch_dtype=torch.float16).to("cuda")
# vae.to(memory_format=torch.channels_last) 

print('loading pipe')
pipe = StableDiffusionControlNetPipeline.from_single_file(
    base_model_url,
    safety_checker=None,
    controlnet=controlnet,
    scheduler=scheduler,
    # vae=vae,
    torch_dtype=torch.float16,
).to("cuda")

print("loading preprocessor")
preprocessor = Preprocessor()
preprocessor.load("NormalBae")
# pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="EasyNegativeV2.safetensors", token="EasyNegativeV2",)
# pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="badhandv4.pt", token="badhandv4")
# pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="fcNeg-neg.pt", token="fcNeg-neg")
# pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_Ahegao.pt", token="HDA_Ahegao")
# pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_Bondage.pt", token="HDA_Bondage")
# pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_pet_play.pt", token="HDA_pet_play")
# pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_unconventional maid.pt", token="HDA_unconventional_maid")
# pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_NakedHoodie.pt", token="HDA_NakedHoodie")
# pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_NunDress.pt", token="HDA_NunDress")
# pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_Shibari.pt", token="HDA_Shibari")
pipe.to("cuda")

print("---------------Loaded controlnet pipeline---------------") 
torch.cuda.empty_cache()
gc.collect()
print(f"CUDA memory allocated: {torch.cuda.max_memory_allocated(device='cuda') / 1e9:.2f} GB")
print("Model Compiled!")


def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

def get_additional_prompt():
    prompt = "hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed"
    top = ["tank top", "blouse", "button up shirt", "sweater", "corset top"]
    bottom = ["short skirt", "athletic shorts", "jean shorts", "pleated skirt", "short skirt", "leggings", "high-waisted shorts"]
    accessory = ["knee-high boots", "gloves", "Thigh-high stockings", "Garter belt", "choker", "necklace", "headband", "headphones"]
    return f"{prompt}, {random.choice(top)}, {random.choice(bottom)}, {random.choice(accessory)}, score_9"
    # outfit = ["schoolgirl outfit", "playboy outfit", "red dress", "gala dress", "cheerleader outfit", "nurse outfit", "Kimono"]

def get_prompt(prompt, additional_prompt):
    default = "hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed,tungsten white balance"
    # default2 = f"professional 3d model {prompt},octane render,highly detailed,volumetric,dramatic lighting,hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed"
    default2 = f"hyperrealistic photography of {prompt},extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed"
    randomize = get_additional_prompt()
    # nude = "NSFW,((nude)),medium bare breasts,hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed"
    # bodypaint = "((fully naked with no clothes)),nude naked seethroughxray,invisiblebodypaint,rating_newd,NSFW"
    lab_girl = "hyperrealistic photography, extremely detailed, shy assistant wearing minidress boots and gloves, laboratory background, score_9, 1girl"
    pet_play = "hyperrealistic photography, extremely detailed, playful, blush, glasses, collar, score_9, HDA_pet_play"
    bondage = "hyperrealistic photography, extremely detailed, submissive, glasses, score_9, HDA_Bondage"
    # ahegao = "((invisible clothing)), hyperrealistic photography,exposed vagina,sexy,nsfw,HDA_Ahegao"
    ahegao2 = "(invisiblebodypaint),rating_newd,HDA_Ahegao"
    athleisure = "hyperrealistic photography, extremely detailed, 1girl athlete, exhausted embarrassed sweaty,outdoors, ((athleisure clothing)), score_9"
    atompunk = "((atompunk world)), hyperrealistic photography, extremely detailed, short hair, bodysuit, glasses, neon cyberpunk background, score_9"
    maid = "hyperrealistic photography, extremely detailed, shy, blushing, score_9, pastel background, HDA_unconventional_maid"
    nundress = "hyperrealistic photography, extremely detailed, shy, blushing, fantasy background, score_9, HDA_NunDress"
    naked_hoodie = "hyperrealistic photography, extremely detailed, medium hair, cityscape, (neon lights), score_9, HDA_NakedHoodie"
    abg = "(1girl, asian body covered in words, words on body, tattoos of (words) on body),(masterpiece, best quality),medium breasts,(intricate details),unity 8k wallpaper,ultra detailed,(pastel colors),beautiful and aesthetic,see-through (clothes),detailed,solo"
    # shibari = "extremely detailed, hyperrealistic photography, earrings, blushing, lace choker, tattoo, medium hair, score_9, HDA_Shibari"
    shibari2 = "octane render, highly detailed, volumetric, HDA_Shibari"
    
    if prompt == "":
        girls = [randomize, pet_play, bondage, lab_girl, athleisure, atompunk, maid, nundress, naked_hoodie, abg, shibari2]
        prompts_nsfw = [abg, shibari2, ahegao2]
        prompt = f"{random.choice(girls)}"
        prompt = default
        # print(f"-------------{preset}-------------")
    else:
        # prompt = f"{prompt}, {randomize}"
        # prompt = f"{default},{prompt}"
        prompt = default2
    # print(f"{prompt}")
    return prompt

css = """
h1, h2, h3 {
    text-align: center;
    display: block;
}
footer {
    visibility: hidden;
}
.gradio-container {
    max-width: 1100px !important;
}
.gr-image {
    display: flex;
    justify-content: center; 
    align-items: center;
    width: 100%;
    height: 512px;
    overflow: hidden;
}
.gr-image img {
    width: 100%;
    height: 100%; 
    object-fit: cover;
    object-position: center;
}
"""
with gr.Blocks("bethecloud/storj_theme", css=css) as demo:
    #############################################################################
    with gr.Row():
        with gr.Accordion("Advanced options", open=show_options, visible=show_options):
            num_images = gr.Slider(
                label="Images", minimum=1, maximum=4, value=1, step=1
            )
            image_resolution = gr.Slider(
                label="Image resolution",
                minimum=256,
                maximum=1024,
                value=768,
                step=256,
            )
            preprocess_resolution = gr.Slider(
                label="Preprocess resolution",
                minimum=128,
                maximum=1024,
                value=768,
                step=1,
            )
            num_steps = gr.Slider(
                label="Number of steps", minimum=1, maximum=100, value=12, step=1
            )  # 20/4.5 or 12 without lora, 4 with lora
            guidance_scale = gr.Slider(
                label="Guidance scale", minimum=0.1, maximum=30.0, value=5.5, step=0.1
            )  # 5 without lora, 2 with lora
            seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            a_prompt = gr.Textbox(
                label="Additional prompt",
                value = ""
            )
            n_prompt = gr.Textbox(
                label="Negative prompt",
                value="EasyNegativeV2, fcNeg, (badhandv4:1.4), chubby face, young kids, (worst quality, low quality, bad quality, normal quality:2.0), (bad hands, missing fingers, extra fingers:2.0)",
            )
    #############################################################################
    # input text
    with gr.Column():
        prompt = gr.Textbox(
            label="Description",
            placeholder="Enter a description (optional)",
        )
    # input image
    with gr.Row(equal_height=True):
        with gr.Column(scale=1, min_width=300):
            image = gr.Image(
                label="Input",
                sources=["upload"],
                show_label=True,
                mirror_webcam=True,
                type="pil",
            )
            # run button
            with gr.Column():
                run_button = gr.Button(value="Use this one", size="lg", visible=False)
        # output image
        with gr.Column(scale=1, min_width=300):
            result = gr.Image(  
                label="Output",
                interactive=False,
                type="pil",
                show_share_button= False,
            )
            # Use this image button
            with gr.Column():
                use_ai_button = gr.Button(value="Use this one", size="lg", visible=False)
    config = [
        image,
        prompt,
        a_prompt,
        n_prompt,
        num_images,
        image_resolution,
        preprocess_resolution,
        num_steps,
        guidance_scale,
        seed,
    ]
    
    with gr.Row():
        helper_text = gr.Markdown("## Tap and hold (on mobile) to save the image.", visible=True)
    
    # image processing
    @gr.on(triggers=[image.upload, prompt.submit, run_button.click], inputs=config, outputs=result, show_progress="minimal")
    def auto_process_image(image, prompt, a_prompt, n_prompt, num_images, image_resolution, preprocess_resolution, num_steps, guidance_scale, seed, progress=gr.Progress(track_tqdm=True)):
        return process_image(image, prompt, a_prompt, n_prompt, num_images, image_resolution, preprocess_resolution, num_steps, guidance_scale, seed)
    
    @gr.on(triggers=[use_ai_button.click], inputs=[result] + config, outputs=[image, result], show_progress="minimal")
    def submit(previous_result, image, prompt, a_prompt, n_prompt, num_images, image_resolution, preprocess_resolution, num_steps, guidance_scale, seed, progress=gr.Progress(track_tqdm=True)):
        # First, yield the previous result to update the input image immediately
        yield previous_result, gr.update()
        # Then, process the new input image
        new_result = process_image(previous_result, prompt, a_prompt, n_prompt, num_images, image_resolution, preprocess_resolution, num_steps, guidance_scale, seed)
        # Finally, yield the new result
        yield previous_result, new_result
                
    # Turn off buttons when processing
    @gr.on(triggers=[image.upload, use_ai_button.click, run_button.click], inputs=None, outputs=[run_button, use_ai_button], show_progress="hidden")
    def turn_buttons_off():
        return gr.update(visible=False), gr.update(visible=False)
    
    # Turn on buttons when processing is complete
    @gr.on(triggers=[result.change], inputs=None, outputs=[use_ai_button, run_button], show_progress="hidden")
    def turn_buttons_on():
        return gr.update(visible=True), gr.update(visible=True)


# @spaces.GPU(duration=12)
@torch.inference_mode()
def process_image(
    image,
    prompt,
    a_prompt,
    n_prompt,
    num_images,
    image_resolution,
    preprocess_resolution,
    num_steps,
    guidance_scale,
    seed,
    progress=gr.Progress(track_tqdm=True)
):
    # torch.cuda.synchronize()
    preprocess_start = time.time()
    print("processing image")
    seed = random.randint(0, MAX_SEED)
    generator = torch.cuda.manual_seed(seed)
    preprocessor.load("NormalBae")
    control_image = preprocessor(
        image=image,
        image_resolution=image_resolution,
        detect_resolution=preprocess_resolution,
    )
    preprocess_time = time.time() - preprocess_start

    custom_prompt=str(get_prompt(prompt, a_prompt))
    negative_prompt=str(n_prompt)
    print(f"{custom_prompt}")
    print(f"\n-------------------------Preprocess done in: {preprocess_time:.2f} seconds-------------------------")    
    start = time.time()
    results = pipe(
        prompt=custom_prompt,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_images_per_prompt=num_images,
        num_inference_steps=num_steps,
        generator=generator,
        image=control_image,
    ).images[0]
    print(f"\n-------------------------Inference done in: {time.time() - start:.2f} seconds-------------------------")
    torch.cuda.empty_cache()
    return results

if prod:
    demo.queue(max_size=20).launch(server_name="localhost", server_port=port)
else:
    demo.queue(api_open=False).launch(show_api=False)