File size: 15,196 Bytes
56cd3fd 1f7d8c9 1bff291 56cd3fd 1f7d8c9 56cd3fd 1f7d8c9 56cd3fd 1f7d8c9 56cd3fd 1f7d8c9 56cd3fd fe631f4 1f7d8c9 56cd3fd 1f7d8c9 56cd3fd 1f7d8c9 56cd3fd 1f7d8c9 56cd3fd 1f7d8c9 56cd3fd 1f7d8c9 56cd3fd 21c2875 56cd3fd 1f7d8c9 56cd3fd 1f7d8c9 fe631f4 1f7d8c9 395897a 1f7d8c9 395897a 1f7d8c9 395897a 1f7d8c9 395897a 56cd3fd 395897a 1f7d8c9 56cd3fd 1f7d8c9 56cd3fd 1f7d8c9 56cd3fd 1f7d8c9 56cd3fd 1f7d8c9 56cd3fd 1f7d8c9 56cd3fd 1f7d8c9 56cd3fd 1f7d8c9 56cd3fd 1f7d8c9 56cd3fd 1f7d8c9 56cd3fd 1f7d8c9 fe631f4 56cd3fd fe631f4 56cd3fd fe631f4 56cd3fd fe631f4 56cd3fd fe631f4 56cd3fd fe631f4 1f7d8c9 1bff291 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 |
prod = False
port = 8080
show_options = False
if prod:
port = 8081
# show_options = False
import os
import gc
import random
import time
import gradio as gr
import numpy as np
# import imageio
from huggingface_hub import HfApi
import torch
# import spaces
from PIL import Image
from diffusers import (
ControlNetModel,
DPMSolverMultistepScheduler,
StableDiffusionControlNetPipeline,
# AutoencoderKL,
)
from controlnet_aux_local import NormalBaeDetector
# from controlnet_aux import NormalBaeDetector
from diffusers.models.attention_processor import AttnProcessor2_0
MAX_SEED = np.iinfo(np.int32).max
API_KEY = os.environ.get("API_KEY", None)
print("CUDA version:", torch.version.cuda)
print("loading everything")
compiled = False
api = HfApi()
class Preprocessor:
MODEL_ID = "lllyasviel/Annotators"
def __init__(self):
self.model = None
self.name = ""
def load(self, name: str) -> None:
if name == self.name:
return
elif name == "NormalBae":
print("Loading NormalBae")
self.model = NormalBaeDetector.from_pretrained(self.MODEL_ID).to("cuda")
torch.cuda.empty_cache()
self.name = name
else:
raise ValueError
return
def __call__(self, image: Image.Image, **kwargs) -> Image.Image:
return self.model(image, **kwargs)
# torch.cuda.max_memory_allocated(device="cuda")
# Controlnet Normal
model_id = "lllyasviel/control_v11p_sd15_normalbae"
print("initializing controlnet")
controlnet = ControlNetModel.from_pretrained(
model_id,
torch_dtype=torch.float16,
attn_implementation="flash_attention_2",
).to("cuda")
# Scheduler
scheduler = DPMSolverMultistepScheduler.from_pretrained(
"ashllay/stable-diffusion-v1-5-archive",
solver_order=2,
subfolder="scheduler",
use_karras_sigmas=True,
final_sigmas_type="sigma_min",
algorithm_type="sde-dpmsolver++",
prediction_type="epsilon",
thresholding=False,
denoise_final=True,
device_map="cuda",
torch_dtype=torch.float16,
)
# Stable Diffusion Pipeline URL
base_model_url = "https://huggingface.co/broyang/hentaidigitalart_v20/blob/main/realcartoon3d_v15.safetensors"
# base_model_url = "https://huggingface.co/Lykon/AbsoluteReality/blob/main/AbsoluteReality_1.8.1_pruned.safetensors"
# vae_url = "https://huggingface.co/stabilityai/sd-vae-ft-mse-original/blob/main/vae-ft-mse-840000-ema-pruned.safetensors"
# print('loading vae')
# vae = AutoencoderKL.from_single_file(vae_url, torch_dtype=torch.float16).to("cuda")
# vae.to(memory_format=torch.channels_last)
print('loading pipe')
pipe = StableDiffusionControlNetPipeline.from_single_file(
base_model_url,
safety_checker=None,
controlnet=controlnet,
scheduler=scheduler,
# vae=vae,
torch_dtype=torch.float16,
).to("cuda")
print("loading preprocessor")
preprocessor = Preprocessor()
preprocessor.load("NormalBae")
# pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="EasyNegativeV2.safetensors", token="EasyNegativeV2",)
# pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="badhandv4.pt", token="badhandv4")
# pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="fcNeg-neg.pt", token="fcNeg-neg")
# pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_Ahegao.pt", token="HDA_Ahegao")
# pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_Bondage.pt", token="HDA_Bondage")
# pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_pet_play.pt", token="HDA_pet_play")
# pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_unconventional maid.pt", token="HDA_unconventional_maid")
# pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_NakedHoodie.pt", token="HDA_NakedHoodie")
# pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_NunDress.pt", token="HDA_NunDress")
# pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_Shibari.pt", token="HDA_Shibari")
pipe.to("cuda")
print("---------------Loaded controlnet pipeline---------------")
torch.cuda.empty_cache()
gc.collect()
print(f"CUDA memory allocated: {torch.cuda.max_memory_allocated(device='cuda') / 1e9:.2f} GB")
print("Model Compiled!")
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def get_additional_prompt():
prompt = "hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed"
top = ["tank top", "blouse", "button up shirt", "sweater", "corset top"]
bottom = ["short skirt", "athletic shorts", "jean shorts", "pleated skirt", "short skirt", "leggings", "high-waisted shorts"]
accessory = ["knee-high boots", "gloves", "Thigh-high stockings", "Garter belt", "choker", "necklace", "headband", "headphones"]
return f"{prompt}, {random.choice(top)}, {random.choice(bottom)}, {random.choice(accessory)}, score_9"
# outfit = ["schoolgirl outfit", "playboy outfit", "red dress", "gala dress", "cheerleader outfit", "nurse outfit", "Kimono"]
def get_prompt(prompt, additional_prompt):
default = "hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed,tungsten white balance"
# default2 = f"professional 3d model {prompt},octane render,highly detailed,volumetric,dramatic lighting,hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed"
default2 = f"hyperrealistic photography of {prompt},extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed"
randomize = get_additional_prompt()
# nude = "NSFW,((nude)),medium bare breasts,hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed"
# bodypaint = "((fully naked with no clothes)),nude naked seethroughxray,invisiblebodypaint,rating_newd,NSFW"
lab_girl = "hyperrealistic photography, extremely detailed, shy assistant wearing minidress boots and gloves, laboratory background, score_9, 1girl"
pet_play = "hyperrealistic photography, extremely detailed, playful, blush, glasses, collar, score_9, HDA_pet_play"
bondage = "hyperrealistic photography, extremely detailed, submissive, glasses, score_9, HDA_Bondage"
# ahegao = "((invisible clothing)), hyperrealistic photography,exposed vagina,sexy,nsfw,HDA_Ahegao"
ahegao2 = "(invisiblebodypaint),rating_newd,HDA_Ahegao"
athleisure = "hyperrealistic photography, extremely detailed, 1girl athlete, exhausted embarrassed sweaty,outdoors, ((athleisure clothing)), score_9"
atompunk = "((atompunk world)), hyperrealistic photography, extremely detailed, short hair, bodysuit, glasses, neon cyberpunk background, score_9"
maid = "hyperrealistic photography, extremely detailed, shy, blushing, score_9, pastel background, HDA_unconventional_maid"
nundress = "hyperrealistic photography, extremely detailed, shy, blushing, fantasy background, score_9, HDA_NunDress"
naked_hoodie = "hyperrealistic photography, extremely detailed, medium hair, cityscape, (neon lights), score_9, HDA_NakedHoodie"
abg = "(1girl, asian body covered in words, words on body, tattoos of (words) on body),(masterpiece, best quality),medium breasts,(intricate details),unity 8k wallpaper,ultra detailed,(pastel colors),beautiful and aesthetic,see-through (clothes),detailed,solo"
# shibari = "extremely detailed, hyperrealistic photography, earrings, blushing, lace choker, tattoo, medium hair, score_9, HDA_Shibari"
shibari2 = "octane render, highly detailed, volumetric, HDA_Shibari"
if prompt == "":
girls = [randomize, pet_play, bondage, lab_girl, athleisure, atompunk, maid, nundress, naked_hoodie, abg, shibari2]
prompts_nsfw = [abg, shibari2, ahegao2]
prompt = f"{random.choice(girls)}"
prompt = default
# print(f"-------------{preset}-------------")
else:
# prompt = f"{prompt}, {randomize}"
# prompt = f"{default},{prompt}"
prompt = default2
# print(f"{prompt}")
return prompt
css = """
h1, h2, h3 {
text-align: center;
display: block;
}
footer {
visibility: hidden;
}
.gradio-container {
max-width: 1100px !important;
}
.gr-image {
display: flex;
justify-content: center;
align-items: center;
width: 100%;
height: 512px;
overflow: hidden;
}
.gr-image img {
width: 100%;
height: 100%;
object-fit: cover;
object-position: center;
}
"""
with gr.Blocks("bethecloud/storj_theme", css=css) as demo:
#############################################################################
with gr.Row():
with gr.Accordion("Advanced options", open=show_options, visible=show_options):
num_images = gr.Slider(
label="Images", minimum=1, maximum=4, value=1, step=1
)
image_resolution = gr.Slider(
label="Image resolution",
minimum=256,
maximum=1024,
value=768,
step=256,
)
preprocess_resolution = gr.Slider(
label="Preprocess resolution",
minimum=128,
maximum=1024,
value=768,
step=1,
)
num_steps = gr.Slider(
label="Number of steps", minimum=1, maximum=100, value=12, step=1
) # 20/4.5 or 12 without lora, 4 with lora
guidance_scale = gr.Slider(
label="Guidance scale", minimum=0.1, maximum=30.0, value=5.5, step=0.1
) # 5 without lora, 2 with lora
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
a_prompt = gr.Textbox(
label="Additional prompt",
value = ""
)
n_prompt = gr.Textbox(
label="Negative prompt",
value="EasyNegativeV2, fcNeg, (badhandv4:1.4), chubby face, young kids, (worst quality, low quality, bad quality, normal quality:2.0), (bad hands, missing fingers, extra fingers:2.0)",
)
#############################################################################
# input text
with gr.Column():
prompt = gr.Textbox(
label="Description",
placeholder="Enter a description (optional)",
)
# input image
with gr.Row(equal_height=True):
with gr.Column(scale=1, min_width=300):
image = gr.Image(
label="Input",
sources=["upload"],
show_label=True,
mirror_webcam=True,
type="pil",
)
# run button
with gr.Column():
run_button = gr.Button(value="Use this one", size="lg", visible=False)
# output image
with gr.Column(scale=1, min_width=300):
result = gr.Image(
label="Output",
interactive=False,
type="pil",
show_share_button= False,
)
# Use this image button
with gr.Column():
use_ai_button = gr.Button(value="Use this one", size="lg", visible=False)
config = [
image,
prompt,
a_prompt,
n_prompt,
num_images,
image_resolution,
preprocess_resolution,
num_steps,
guidance_scale,
seed,
]
with gr.Row():
helper_text = gr.Markdown("## Tap and hold (on mobile) to save the image.", visible=True)
# image processing
@gr.on(triggers=[image.upload, prompt.submit, run_button.click], inputs=config, outputs=result, show_progress="minimal")
def auto_process_image(image, prompt, a_prompt, n_prompt, num_images, image_resolution, preprocess_resolution, num_steps, guidance_scale, seed, progress=gr.Progress(track_tqdm=True)):
return process_image(image, prompt, a_prompt, n_prompt, num_images, image_resolution, preprocess_resolution, num_steps, guidance_scale, seed)
@gr.on(triggers=[use_ai_button.click], inputs=[result] + config, outputs=[image, result], show_progress="minimal")
def submit(previous_result, image, prompt, a_prompt, n_prompt, num_images, image_resolution, preprocess_resolution, num_steps, guidance_scale, seed, progress=gr.Progress(track_tqdm=True)):
# First, yield the previous result to update the input image immediately
yield previous_result, gr.update()
# Then, process the new input image
new_result = process_image(previous_result, prompt, a_prompt, n_prompt, num_images, image_resolution, preprocess_resolution, num_steps, guidance_scale, seed)
# Finally, yield the new result
yield previous_result, new_result
# Turn off buttons when processing
@gr.on(triggers=[image.upload, use_ai_button.click, run_button.click], inputs=None, outputs=[run_button, use_ai_button], show_progress="hidden")
def turn_buttons_off():
return gr.update(visible=False), gr.update(visible=False)
# Turn on buttons when processing is complete
@gr.on(triggers=[result.change], inputs=None, outputs=[use_ai_button, run_button], show_progress="hidden")
def turn_buttons_on():
return gr.update(visible=True), gr.update(visible=True)
# @spaces.GPU(duration=12)
@torch.inference_mode()
def process_image(
image,
prompt,
a_prompt,
n_prompt,
num_images,
image_resolution,
preprocess_resolution,
num_steps,
guidance_scale,
seed,
progress=gr.Progress(track_tqdm=True)
):
# torch.cuda.synchronize()
preprocess_start = time.time()
print("processing image")
seed = random.randint(0, MAX_SEED)
generator = torch.cuda.manual_seed(seed)
preprocessor.load("NormalBae")
control_image = preprocessor(
image=image,
image_resolution=image_resolution,
detect_resolution=preprocess_resolution,
)
preprocess_time = time.time() - preprocess_start
custom_prompt=str(get_prompt(prompt, a_prompt))
negative_prompt=str(n_prompt)
print(f"{custom_prompt}")
print(f"\n-------------------------Preprocess done in: {preprocess_time:.2f} seconds-------------------------")
start = time.time()
results = pipe(
prompt=custom_prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_images_per_prompt=num_images,
num_inference_steps=num_steps,
generator=generator,
image=control_image,
).images[0]
print(f"\n-------------------------Inference done in: {time.time() - start:.2f} seconds-------------------------")
torch.cuda.empty_cache()
return results
if prod:
demo.queue(max_size=20).launch(server_name="localhost", server_port=port)
else:
demo.queue(api_open=False).launch(show_api=False)
|