anime-ai / app.py
developerskyebrowse's picture
new sd
21c2875
prod = False
port = 8080
show_options = False
if prod:
port = 8081
# show_options = False
import os
import gc
import random
import time
import gradio as gr
import numpy as np
import imageio
from huggingface_hub import HfApi
import torch
import spaces
from PIL import Image
from diffusers import (
ControlNetModel,
DPMSolverMultistepScheduler,
StableDiffusionControlNetPipeline,
# AutoencoderKL,
)
from controlnet_aux_local import NormalBaeDetector
# from controlnet_aux import NormalBaeDetector
from diffusers.models.attention_processor import AttnProcessor2_0
MAX_SEED = np.iinfo(np.int32).max
API_KEY = os.environ.get("API_KEY", None)
print("CUDA version:", torch.version.cuda)
print("loading everything")
compiled = False
api = HfApi()
class Preprocessor:
MODEL_ID = "lllyasviel/Annotators"
def __init__(self):
self.model = None
self.name = ""
def load(self, name: str) -> None:
if name == self.name:
return
elif name == "NormalBae":
print("Loading NormalBae")
self.model = NormalBaeDetector.from_pretrained(self.MODEL_ID).to("cuda")
torch.cuda.empty_cache()
self.name = name
else:
raise ValueError
return
def __call__(self, image: Image.Image, **kwargs) -> Image.Image:
return self.model(image, **kwargs)
# torch.cuda.max_memory_allocated(device="cuda")
# Controlnet Normal
model_id = "lllyasviel/control_v11p_sd15_normalbae"
print("initializing controlnet")
controlnet = ControlNetModel.from_pretrained(
model_id,
torch_dtype=torch.float16,
attn_implementation="flash_attention_2",
).to("cuda")
# Scheduler
scheduler = DPMSolverMultistepScheduler.from_pretrained(
"ashllay/stable-diffusion-v1-5-archive",
solver_order=2,
subfolder="scheduler",
use_karras_sigmas=True,
final_sigmas_type="sigma_min",
algorithm_type="sde-dpmsolver++",
prediction_type="epsilon",
thresholding=False,
denoise_final=True,
device_map="cuda",
torch_dtype=torch.float16,
)
# Stable Diffusion Pipeline URL
base_model_url = "https://huggingface.co/broyang/hentaidigitalart_v20/blob/main/realcartoon3d_v15.safetensors"
# base_model_url = "https://huggingface.co/Lykon/AbsoluteReality/blob/main/AbsoluteReality_1.8.1_pruned.safetensors"
# vae_url = "https://huggingface.co/stabilityai/sd-vae-ft-mse-original/blob/main/vae-ft-mse-840000-ema-pruned.safetensors"
# print('loading vae')
# vae = AutoencoderKL.from_single_file(vae_url, torch_dtype=torch.float16).to("cuda")
# vae.to(memory_format=torch.channels_last)
print('loading pipe')
pipe = StableDiffusionControlNetPipeline.from_single_file(
base_model_url,
safety_checker=None,
controlnet=controlnet,
scheduler=scheduler,
# vae=vae,
torch_dtype=torch.float16,
).to("cuda")
print("loading preprocessor")
preprocessor = Preprocessor()
preprocessor.load("NormalBae")
# pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="EasyNegativeV2.safetensors", token="EasyNegativeV2",)
# pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="badhandv4.pt", token="badhandv4")
# pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="fcNeg-neg.pt", token="fcNeg-neg")
# pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_Ahegao.pt", token="HDA_Ahegao")
# pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_Bondage.pt", token="HDA_Bondage")
# pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_pet_play.pt", token="HDA_pet_play")
# pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_unconventional maid.pt", token="HDA_unconventional_maid")
# pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_NakedHoodie.pt", token="HDA_NakedHoodie")
# pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_NunDress.pt", token="HDA_NunDress")
# pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_Shibari.pt", token="HDA_Shibari")
pipe.to("cuda")
print("---------------Loaded controlnet pipeline---------------")
torch.cuda.empty_cache()
gc.collect()
print(f"CUDA memory allocated: {torch.cuda.max_memory_allocated(device='cuda') / 1e9:.2f} GB")
print("Model Compiled!")
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def get_additional_prompt():
prompt = "hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed"
top = ["tank top", "blouse", "button up shirt", "sweater", "corset top"]
bottom = ["short skirt", "athletic shorts", "jean shorts", "pleated skirt", "short skirt", "leggings", "high-waisted shorts"]
accessory = ["knee-high boots", "gloves", "Thigh-high stockings", "Garter belt", "choker", "necklace", "headband", "headphones"]
return f"{prompt}, {random.choice(top)}, {random.choice(bottom)}, {random.choice(accessory)}, score_9"
# outfit = ["schoolgirl outfit", "playboy outfit", "red dress", "gala dress", "cheerleader outfit", "nurse outfit", "Kimono"]
def get_prompt(prompt, additional_prompt):
default = "hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed,tungsten white balance"
# default2 = f"professional 3d model {prompt},octane render,highly detailed,volumetric,dramatic lighting,hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed"
default2 = f"hyperrealistic photography of {prompt},extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed"
randomize = get_additional_prompt()
# nude = "NSFW,((nude)),medium bare breasts,hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed"
# bodypaint = "((fully naked with no clothes)),nude naked seethroughxray,invisiblebodypaint,rating_newd,NSFW"
lab_girl = "hyperrealistic photography, extremely detailed, shy assistant wearing minidress boots and gloves, laboratory background, score_9, 1girl"
pet_play = "hyperrealistic photography, extremely detailed, playful, blush, glasses, collar, score_9, HDA_pet_play"
bondage = "hyperrealistic photography, extremely detailed, submissive, glasses, score_9, HDA_Bondage"
# ahegao = "((invisible clothing)), hyperrealistic photography,exposed vagina,sexy,nsfw,HDA_Ahegao"
ahegao2 = "(invisiblebodypaint),rating_newd,HDA_Ahegao"
athleisure = "hyperrealistic photography, extremely detailed, 1girl athlete, exhausted embarrassed sweaty,outdoors, ((athleisure clothing)), score_9"
atompunk = "((atompunk world)), hyperrealistic photography, extremely detailed, short hair, bodysuit, glasses, neon cyberpunk background, score_9"
maid = "hyperrealistic photography, extremely detailed, shy, blushing, score_9, pastel background, HDA_unconventional_maid"
nundress = "hyperrealistic photography, extremely detailed, shy, blushing, fantasy background, score_9, HDA_NunDress"
naked_hoodie = "hyperrealistic photography, extremely detailed, medium hair, cityscape, (neon lights), score_9, HDA_NakedHoodie"
abg = "(1girl, asian body covered in words, words on body, tattoos of (words) on body),(masterpiece, best quality),medium breasts,(intricate details),unity 8k wallpaper,ultra detailed,(pastel colors),beautiful and aesthetic,see-through (clothes),detailed,solo"
# shibari = "extremely detailed, hyperrealistic photography, earrings, blushing, lace choker, tattoo, medium hair, score_9, HDA_Shibari"
shibari2 = "octane render, highly detailed, volumetric, HDA_Shibari"
if prompt == "":
girls = [randomize, pet_play, bondage, lab_girl, athleisure, atompunk, maid, nundress, naked_hoodie, abg, shibari2]
prompts_nsfw = [abg, shibari2, ahegao2]
prompt = f"{random.choice(girls)}"
prompt = default
# print(f"-------------{preset}-------------")
else:
# prompt = f"{prompt}, {randomize}"
# prompt = f"{default},{prompt}"
prompt = default2
# print(f"{prompt}")
return prompt
css = """
h1, h2, h3 {
text-align: center;
display: block;
}
footer {
visibility: hidden;
}
.gradio-container {
max-width: 1100px !important;
}
.gr-image {
display: flex;
justify-content: center;
align-items: center;
width: 100%;
height: 512px;
overflow: hidden;
}
.gr-image img {
width: 100%;
height: 100%;
object-fit: cover;
object-position: center;
}
"""
with gr.Blocks("bethecloud/storj_theme", css=css) as demo:
#############################################################################
with gr.Row():
with gr.Accordion("Advanced options", open=show_options, visible=show_options):
num_images = gr.Slider(
label="Images", minimum=1, maximum=4, value=1, step=1
)
image_resolution = gr.Slider(
label="Image resolution",
minimum=256,
maximum=1024,
value=768,
step=256,
)
preprocess_resolution = gr.Slider(
label="Preprocess resolution",
minimum=128,
maximum=1024,
value=768,
step=1,
)
num_steps = gr.Slider(
label="Number of steps", minimum=1, maximum=100, value=12, step=1
) # 20/4.5 or 12 without lora, 4 with lora
guidance_scale = gr.Slider(
label="Guidance scale", minimum=0.1, maximum=30.0, value=5.5, step=0.1
) # 5 without lora, 2 with lora
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
a_prompt = gr.Textbox(
label="Additional prompt",
value = ""
)
n_prompt = gr.Textbox(
label="Negative prompt",
value="EasyNegativeV2, fcNeg, (badhandv4:1.4), chubby face, young kids, (worst quality, low quality, bad quality, normal quality:2.0), (bad hands, missing fingers, extra fingers:2.0)",
)
#############################################################################
# input text
with gr.Column():
prompt = gr.Textbox(
label="Description",
placeholder="Enter a description (optional)",
)
# input image
with gr.Row(equal_height=True):
with gr.Column(scale=1, min_width=300):
image = gr.Image(
label="Input",
sources=["upload"],
show_label=True,
mirror_webcam=True,
type="pil",
)
# run button
with gr.Column():
run_button = gr.Button(value="Use this one", size="lg", visible=False)
# output image
with gr.Column(scale=1, min_width=300):
result = gr.Image(
label="Output",
interactive=False,
type="pil",
show_share_button= False,
)
# Use this image button
with gr.Column():
use_ai_button = gr.Button(value="Use this one", size="lg", visible=False)
config = [
image,
prompt,
a_prompt,
n_prompt,
num_images,
image_resolution,
preprocess_resolution,
num_steps,
guidance_scale,
seed,
]
with gr.Row():
helper_text = gr.Markdown("## Tap and hold (on mobile) to save the image.", visible=True)
# image processing
@gr.on(triggers=[image.upload, prompt.submit, run_button.click], inputs=config, outputs=result, show_progress="minimal")
def auto_process_image(image, prompt, a_prompt, n_prompt, num_images, image_resolution, preprocess_resolution, num_steps, guidance_scale, seed, progress=gr.Progress(track_tqdm=True)):
return process_image(image, prompt, a_prompt, n_prompt, num_images, image_resolution, preprocess_resolution, num_steps, guidance_scale, seed)
@gr.on(triggers=[use_ai_button.click], inputs=[result] + config, outputs=[image, result], show_progress="minimal")
def submit(previous_result, image, prompt, a_prompt, n_prompt, num_images, image_resolution, preprocess_resolution, num_steps, guidance_scale, seed, progress=gr.Progress(track_tqdm=True)):
# First, yield the previous result to update the input image immediately
yield previous_result, gr.update()
# Then, process the new input image
new_result = process_image(previous_result, prompt, a_prompt, n_prompt, num_images, image_resolution, preprocess_resolution, num_steps, guidance_scale, seed)
# Finally, yield the new result
yield previous_result, new_result
# Turn off buttons when processing
@gr.on(triggers=[image.upload, use_ai_button.click, run_button.click], inputs=None, outputs=[run_button, use_ai_button], show_progress="hidden")
def turn_buttons_off():
return gr.update(visible=False), gr.update(visible=False)
# Turn on buttons when processing is complete
@gr.on(triggers=[result.change], inputs=None, outputs=[use_ai_button, run_button], show_progress="hidden")
def turn_buttons_on():
return gr.update(visible=True), gr.update(visible=True)
@spaces.GPU(duration=12)
@torch.inference_mode()
def process_image(
image,
prompt,
a_prompt,
n_prompt,
num_images,
image_resolution,
preprocess_resolution,
num_steps,
guidance_scale,
seed,
progress=gr.Progress(track_tqdm=True)
):
preprocess_start = time.time()
print("processing image")
seed = random.randint(0, MAX_SEED)
generator = torch.cuda.manual_seed(seed)
preprocessor.load("NormalBae")
control_image = preprocessor(
image=image,
image_resolution=image_resolution,
detect_resolution=preprocess_resolution,
)
preprocess_time = time.time() - preprocess_start
custom_prompt=str(get_prompt(prompt, a_prompt))
negative_prompt=str(n_prompt)
print(f"{custom_prompt}")
print(f"\n-------------------------Preprocess done in: {preprocess_time:.2f} seconds-------------------------")
start = time.time()
results = pipe(
prompt=custom_prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_images_per_prompt=num_images,
num_inference_steps=num_steps,
generator=generator,
image=control_image,
).images[0]
print(f"\n-------------------------Inference done in: {time.time() - start:.2f} seconds-------------------------")
torch.cuda.empty_cache()
# upload block
timestamp = int(time.time())
img_path = f"{timestamp}.jpg"
results_path = f"{timestamp}_out.jpg"
imageio.imsave(img_path, image)
imageio.imsave(results_path, results)
api.upload_file(
path_or_fileobj=img_path,
path_in_repo=img_path,
repo_id="broyang/anime-ai-outputs2",
repo_type="dataset",
token=API_KEY,
run_as_future=True,
)
api.upload_file(
path_or_fileobj=results_path,
path_in_repo=results_path,
repo_id="broyang/anime-ai-outputs2",
repo_type="dataset",
token=API_KEY,
run_as_future=True,
)
return results
if prod:
demo.queue(max_size=20).launch(server_name="localhost", server_port=port)
else:
demo.queue(api_open=False).launch(show_api=False)