Spaces:
Runtime error
Runtime error
# app.py | |
import gradio as gr | |
import numpy as np | |
import tensorflow as tf | |
import tensorflow_hub as hub | |
from tensorflow.keras.models import load_model | |
import os | |
os.environ["CUDA_VISIBLE_DEVICES"] = "-1" | |
# Specify the custom objects for loading the model | |
custom_objects = {'KerasLayer': hub.KerasLayer} | |
# Try loading the model with custom objects | |
try: | |
model = load_model('bird_model.h5', custom_objects=custom_objects) | |
except ValueError as e: | |
print("Model loading failed with error:", e) | |
print("Please ensure the model was saved correctly and matches the KerasLayer structure.") | |
exit(1) | |
# Load class labels from your text file | |
train_info = [] | |
with open('labelwithspace.txt', 'r') as file: | |
train_info = [line.strip() for line in file.read().splitlines()] | |
# Function to preprocess the input image | |
def preprocess_image(image): | |
img = cv2.resize(image, (224, 224)) | |
img = img / 255.0 # Normalize | |
return img | |
# Prediction function | |
def predict_image(image): | |
img = preprocess_image(image) | |
img = np.expand_dims(img, axis=0) | |
predictions = model.predict(img)[0] | |
top_class = np.argmax(predictions) | |
label = train_info[top_class] | |
return label | |
# Gradio interface | |
input_image = gr.Image(shape=(224, 224), label="Input Image") | |
output_label = gr.Label(label="Predicted Bird Species") | |
# Launch Gradio | |
gr.Interface(fn=predict_image, inputs=input_image, outputs=output_label, capture_session=True).launch() | |