Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
import numpy as np
|
6 |
+
import tensorflow_hub as hub
|
7 |
+
from tensorflow.keras.models import load_model
|
8 |
+
import cv2
|
9 |
+
|
10 |
+
# Define a dictionary to map the custom layer to its implementation
|
11 |
+
custom_objects = {'KerasLayer': hub.KerasLayer}
|
12 |
+
|
13 |
+
# Load your model (ensure the path is correct)
|
14 |
+
model = load_model('bird_model.h5', custom_objects=custom_objects)
|
15 |
+
|
16 |
+
# Define your class labels or categories for predictions
|
17 |
+
train_info = [] # Replace with your actual class labels
|
18 |
+
|
19 |
+
# Read image names from the text file
|
20 |
+
with open('label.txt', 'r') as file:
|
21 |
+
train_info = [line.strip() for line in file.read().splitlines()]
|
22 |
+
|
23 |
+
|
24 |
+
def predict_image(image):
|
25 |
+
img = cv2.resize(image, (224, 224))
|
26 |
+
img = img / 255.0
|
27 |
+
predictions = model.predict(img[np.newaxis, ...])[0]
|
28 |
+
top_classes = np.argsort(predictions)[-3:][::-1]
|
29 |
+
top_class = top_classes[0] # Get the index of the top prediction
|
30 |
+
label = train_info[top_class] # Use the index to retrieve the label
|
31 |
+
return label
|
32 |
+
|
33 |
+
|
34 |
+
# Define Gradio interface
|
35 |
+
input_image = gr.inputs.Image(shape=(224, 224))
|
36 |
+
output_label = gr.outputs.Label()
|
37 |
+
|
38 |
+
gr.Interface(fn=predict_image, inputs=input_image, outputs=output_label, capture_session=True).launch()
|