sd3 / app.py
bsjd's picture
Create app.py
42dfc4e verified
raw
history blame
3.38 kB
import os
import sys
import gradio as gr
import torch
import random
import numpy as np
from PIL import Image
# Setup and model loading
os.chdir('/content')
!git clone -b totoro2 https://github.com/camenduru/ComfyUI /content/TotoroUI
os.chdir('/content/TotoroUI')
# Create requirements.txt if it doesn't exist
requirements_content = """torch
torchsde
einops
diffusers
accelerate
xformers==0.0.26.post1
gradio"""
with open("requirements.txt", "w") as f:
f.write(requirements_content)
# Install dependencies from requirements.txt
!pip install -r requirements.txt
# Install aria2
!apt -y install -qq aria2
# Download model weights
!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/adamo1139/stable-diffusion-3-medium-ungated/resolve/main/sd3_medium_incl_clips_t5xxlfp8.safetensors -d /content/TotoroUI/model -o sd3_medium_incl_clips_t5xxlfp8.safetensors
# Add TotoroUI to sys.path
sys.path.append('/content/TotoroUI')
# Import after adding to sys.path
import node_helpers
from totoro.sd import load_checkpoint_guess_config
import nodes
# Check for GPU availability and CUDA
use_cuda = torch.cuda.is_available()
model_patcher, clip, vae, clipvision = load_checkpoint_guess_config(
"/content/TotoroUI/model/sd3_medium_incl_clips_t5xxlfp8.safetensors",
output_vae=True, output_clip=True, embedding_directory=None
)
def zero_out(conditioning):
c = []
for t in conditioning:
d = t[1].copy()
if "pooled_output" in d:
d["pooled_output"] = torch.zeros_like(d["pooled_output"])
n = [torch.zeros_like(t[0]), d]
c.append(n)
return (c, )
def generate_image(prompt, negative_prompt, steps):
with torch.inference_mode():
latent = {"samples": torch.ones([1, 16, 1024 // 8, 1024 // 8]) * 0.0609}
cond, pooled = clip.encode_from_tokens(clip.tokenize(prompt), return_pooled=True)
cond = [[cond, {"pooled_output": pooled}]]
n_cond, n_pooled = clip.encode_from_tokens(clip.tokenize(negative_prompt), return_pooled=True)
n_cond = [[n_cond, {"pooled_output": n_pooled}]]
n_cond1 = node_helpers.conditioning_set_values(n_cond, {"start_percent": 0, "end_percent": 0.1})
n_cond2 = zero_out(n_cond)
n_cond2 = node_helpers.conditioning_set_values(n_cond2[0], {"start_percent": 0.1, "end_percent": 1.0})
n_cond = n_cond1 + n_cond2
seed = random.randint(0, 18446744073709551615)
sample = nodes.common_ksampler(
model=model_patcher,
seed=seed,
steps=steps,
cfg=4.5,
sampler_name="dpmpp_2m",
scheduler="sgm_uniform",
positive=cond,
negative=n_cond,
latent=latent,
denoise=1
)
sample = sample[0]["samples"].to(torch.float16)
if use_cuda:
vae.first_stage_model.cuda()
decoded = vae.decode_tiled(sample).detach()
return Image.fromarray(np.array(decoded*255, dtype=np.uint8)[0])
# Gradio interface
interface = gr.Interface(
fn=generate_image,
inputs=[
gr.Textbox(label="Prompt"),
gr.Textbox(label="Negative Prompt"),
gr.Slider(label="Steps", minimum=1, maximum=200, step=1, default=28)
],
outputs=gr.Image(label="Generated Image")
)
interface.launch()