Spaces:
Running
Running
import openai, os, time | |
from datasets import load_dataset | |
from pymongo.mongo_client import MongoClient | |
DB_NAME = "airbnb_dataset" | |
COLLECTION_NAME = "listings_reviews" | |
def connect_to_database(): | |
MONGODB_ATLAS_CLUSTER_URI = os.environ["MONGODB_ATLAS_CLUSTER_URI"] | |
mongo_client = MongoClient(MONGODB_ATLAS_CLUSTER_URI, appname="advanced-rag") | |
db = mongo_client.get_database(DB_NAME) | |
collection = db.get_collection(COLLECTION_NAME) | |
return db, collection | |
def rag_ingestion(collection): | |
dataset = load_dataset("bstraehle/airbnb-san-francisco-202403-embed", streaming=True, split="train") | |
collection.delete_many({}) | |
collection.insert_many(dataset) | |
return "Manually create a vector search index (in free tier, this feature is not available via SDK)" | |
def rag_retrieval_naive(openai_api_key, | |
prompt, | |
accomodates, | |
bedrooms, | |
db, | |
collection, | |
vector_index="vector_index"): | |
# Naive RAG: Semantic search | |
retrieval_result = vector_search_naive( | |
openai_api_key, | |
prompt, | |
accomodates, | |
bedrooms, | |
db, | |
collection, | |
vector_index | |
) | |
if not retrieval_result: | |
return "No results found." | |
#print(retrieval_result) | |
return retrieval_result | |
def rag_retrieval_advanced(openai_api_key, | |
prompt, | |
accomodates, | |
bedrooms, | |
db, | |
collection, | |
vector_index="vector_index"): | |
# Advanced RAG: Semantic search plus... | |
# 1a) Pre-retrieval processing: index filter (accomodates, bedrooms) plus... | |
# 1b) Post-retrieval processing: result filter (accomodates, bedrooms) plus... | |
# 2) Weighted average review, sorted in descending order | |
additional_stages = [ | |
get_stage_average_review_and_review_count(), | |
get_stage_weighting(), | |
get_stage_sorting() | |
] | |
retrieval_result = vector_search_advanced( | |
openai_api_key, | |
prompt, | |
accomodates, | |
bedrooms, | |
db, | |
collection, | |
additional_stages, | |
vector_index | |
) | |
if not retrieval_result: | |
return "No results found." | |
#print(retrieval_result) | |
return retrieval_result | |
def inference(openai_api_key, prompt): | |
content = ( | |
"Answer the question.\n" | |
"If you don't know the answer, just say that you don't know, don't try to make up an answer.\n" | |
"Keep the answer as concise as possible.\n\n" | |
f"Question: {prompt}\n" | |
"Helpful Answer: " | |
) | |
return invoke_llm(openai_api_key, content) | |
def rag_inference(openai_api_key, prompt, retrieval_result): | |
content = ( | |
"Use the following pieces of context to answer the question at the end.\n" | |
"If you don't know the answer, just say that you don't know, don't try to make up an answer.\n" | |
"Keep the answer as concise as possible.\n\n" | |
f"{retrieval_result}\n\n" | |
f"Question: {prompt}\n" | |
"Helpful Answer: " | |
) | |
return invoke_llm(openai_api_key, content) | |
def invoke_llm(openai_api_key, content): | |
openai.api_key = openai_api_key | |
completion = openai.chat.completions.create( | |
model="gpt-4o", | |
messages=[ | |
{ | |
"role": "system", | |
"content": "You are an AirBnB listing recommendation system."}, | |
{ | |
"role": "user", | |
"content": content | |
} | |
], | |
temperature=0.01 | |
) | |
return completion.choices[0].message.content | |
def vector_search_naive(openai_api_key, | |
prompt, | |
accomodates, | |
bedrooms, | |
db, | |
collection, | |
vector_index="vector_index"): | |
query_embedding = get_text_embedding(openai_api_key, prompt) | |
if query_embedding is None: | |
return "Invalid query or embedding generation failed." | |
vector_search_stage = { | |
"$vectorSearch": { | |
"index": vector_index, | |
"queryVector": query_embedding, | |
"path": "description_embedding", | |
"numCandidates": 150, | |
"limit": 25, | |
} | |
} | |
pipeline = [ | |
vector_search_stage, | |
get_stage_include_fields(), | |
get_stage_filter_result(accomodates, bedrooms) | |
] | |
return invoke_search(db, collection, pipeline) | |
def vector_search_advanced(openai_api_key, | |
prompt, | |
accommodates, | |
bedrooms, | |
db, | |
collection, | |
additional_stages=[], | |
vector_index="vector_index"): | |
query_embedding = get_text_embedding(openai_api_key, prompt) | |
if query_embedding is None: | |
return "Invalid query or embedding generation failed." | |
vector_search_and_filter_stage = { | |
"$vectorSearch": { | |
"index": vector_index, | |
"queryVector": query_embedding, | |
"path": "description_embedding", | |
"numCandidates": 150, | |
"limit": 25, | |
"filter": { | |
"$and": [ | |
{"accommodates": {"$eq": accommodates}}, | |
{"bedrooms": {"$eq": bedrooms}} | |
] | |
}, | |
} | |
} | |
pipeline = [ | |
vector_search_and_filter_stage, | |
get_stage_include_fields() | |
] + additional_stages | |
return invoke_search(db, collection, pipeline) | |
def get_stage_exclude_fields(): | |
return { | |
"$unset": "description_embedding" | |
} | |
def get_stage_include_fields(): | |
return { | |
"$project": { | |
"id": 1, | |
"listing_url": 1, | |
"name": 1, | |
"description": 1, | |
"neighborhood_overview": 1, | |
"picture_url": 1, | |
"host_id": 1, | |
"host_url": 1, | |
"host_name": 1, | |
"host_since": 1, | |
"host_location": 1, | |
"host_about": 1, | |
"host_response_time": 1, | |
"host_response_rate": 1, | |
"host_acceptance_rate": 1, | |
"host_is_superhost": 1, | |
"host_thumbnail_url": 1, | |
"host_picture_url": 1, | |
"host_neighbourhood": 1, | |
"host_listings_count": 1, | |
"host_total_listings_count": 1, | |
"host_verifications": 1, | |
"host_has_profile_pic": 1, | |
"host_identity_verified": 1, | |
"neighbourhood": 1, | |
"neighbourhood_cleansed": 1, | |
"neighbourhood_group_cleansed": 1, | |
"latitude": 1, | |
"longitude": 1, | |
"property_type": 1, | |
"room_type": 1, | |
"accommodates": 1, | |
"bathrooms": 1, | |
"bathrooms_text": 1, | |
"bedrooms": 1, | |
"beds": 1, | |
"amenities": 1, | |
"price": 1, | |
"minimum_nights": 1, | |
"maximum_nights": 1, | |
"minimum_minimum_nights": 1, | |
"maximum_minimum_nights": 1, | |
"minimum_maximum_nights": 1, | |
"maximum_maximum_nights": 1, | |
"minimum_nights_avg_ntm": 1, | |
"maximum_nights_avg_ntm": 1, | |
"calendar_updated": 1, | |
"has_availability": 1, | |
"availability_30": 1, | |
"availability_60": 1, | |
"availability_90": 1, | |
"availability_365": 1, | |
"number_of_reviews": 1, | |
"number_of_reviews_ltm": 1, | |
"number_of_reviews_l30d": 1, | |
"first_review": 1, | |
"last_review": 1, | |
"review_scores_rating": 1, | |
"review_scores_accuracy": 1, | |
"review_scores_cleanliness": 1, | |
"review_scores_checkin": 1, | |
"review_scores_communication": 1, | |
"review_scores_location": 1, | |
"review_scores_value": 1, | |
"license": 1, | |
"instant_bookable": 1, | |
"calculated_host_listings_count": 1, | |
"calculated_host_listings_count_entire_homes": 1, | |
"calculated_host_listings_count_private_rooms": 1, | |
"calculated_host_listings_count_shared_rooms": 1, | |
"reviews_per_month": 1, | |
} | |
} | |
def get_stage_filter_result(accomodates, bedrooms): | |
return { | |
"$match": { | |
"accommodates": { "$eq": accomodates}, | |
"bedrooms": { "$eq": bedrooms} | |
} | |
} | |
def get_stage_average_review_and_review_count(): | |
return { | |
"$addFields": { | |
"averageReview": { | |
"$divide": [ | |
{ | |
"$add": [ | |
"$review_scores_rating", | |
"$review_scores_accuracy", | |
"$review_scores_cleanliness", | |
"$review_scores_checkin", | |
"$review_scores_communication", | |
"$review_scores_location", | |
"$review_scores_value", | |
] | |
}, | |
7 | |
] | |
}, | |
"reviewCount": "$number_of_reviews" | |
} | |
} | |
def get_stage_weighting(): | |
return { | |
"$addFields": { | |
"weightedAverageReview": { | |
"$add": [ | |
{"$multiply": ["$averageReview", 0.9]}, | |
{"$multiply": ["$reviewCount", 0.1]}, | |
] | |
} | |
} | |
} | |
def get_stage_sorting(): | |
return { | |
"$sort": {"weightedAverageReview": -1} | |
} | |
def invoke_search(db, collection, pipeline): | |
results = collection.aggregate(pipeline) | |
print(f"Vector search millis elapsed: {get_millis_elapsed(db, collection, pipeline)}") | |
return list(results) | |
def get_millis_elapsed(db, collection, pipeline): | |
explain_query_execution = db.command( | |
"explain", { | |
"aggregate": collection.name, | |
"pipeline": pipeline, | |
"cursor": {} | |
}, | |
verbosity="executionStats") | |
explain_vector_search = explain_query_execution["stages"][0]["$vectorSearch"] | |
return explain_vector_search["explain"]["collectStats"]["allCollectorStats"]["millisElapsed"] | |
def get_text_embedding(openai_api_key, text): | |
if not text or not isinstance(text, str): | |
return None | |
openai.api_key = openai_api_key | |
try: | |
return openai.embeddings.create( | |
input=text, | |
model="text-embedding-3-small", dimensions=1536 | |
).data[0].embedding | |
except Exception as e: | |
print(f"Error in get_embedding: {e}") | |
return None |