Spaces:
Running
Running
import openai, os, time | |
import pandas as pd | |
from datasets import load_dataset | |
from document_model import Listing, SearchResultItem | |
from pydantic import ValidationError | |
from pymongo.collection import Collection | |
from pymongo.errors import OperationFailure | |
from pymongo.operations import SearchIndexModel | |
from pymongo.mongo_client import MongoClient | |
DB_NAME = "airbnb_dataset" | |
COLLECTION_NAME = "listings_reviews" | |
def connect_to_database(): | |
MONGODB_ATLAS_CLUSTER_URI = os.environ["MONGODB_ATLAS_CLUSTER_URI"] | |
mongo_client = MongoClient(MONGODB_ATLAS_CLUSTER_URI, appname="advanced-rag") | |
db = mongo_client.get_database(DB_NAME) | |
collection = db.get_collection(COLLECTION_NAME) | |
return db, collection | |
def rag_ingestion(collection): | |
dataset = load_dataset("MongoDB/airbnb_embeddings", streaming=True, split="train") | |
dataset_df = pd.DataFrame(dataset) | |
listings = process_records(dataset_df) | |
collection.delete_many({}) | |
collection.insert_many(listings) | |
return "Manually create a vector search index (in free tier, this feature is not available via SDK)" | |
def rag_retrieval(openai_api_key, prompt, db, collection, stages=[], vector_index="vector_index"): | |
# Assuming vector_search returns a list of dictionaries with keys 'title' and 'plot' | |
get_knowledge = vector_search(openai_api_key, prompt, db, collection, stages, vector_index) | |
# Check if there are any results | |
if not get_knowledge: | |
return "No results found.", "No source information available." | |
# Convert search results into a list of SearchResultItem models | |
search_results_models = [ | |
SearchResultItem(**result) | |
for result in get_knowledge | |
] | |
# Convert search results into a DataFrame for better rendering in Jupyter | |
search_results_df = pd.DataFrame([item.dict() for item in search_results_models]) | |
print("###") | |
print(search_results_df) | |
print("###") | |
return search_results_df | |
def rag_inference(openai_api_key, prompt, search_results): | |
openai.api_key = openai_api_key | |
# Generate system response using OpenAI's completion | |
content = f"Answer this user question: {prompt} with the following context:\n{search_results}" | |
completion = openai.chat.completions.create( | |
model="gpt-4o", | |
messages=[ | |
{ | |
"role": "system", | |
"content": "You are an AirBnB listing recommendation system."}, | |
{ | |
"role": "user", | |
"content": content | |
} | |
] | |
) | |
completion_result = completion.choices[0].message.content | |
print("###") | |
print(completion_result) | |
print("###") | |
return completion_result | |
def process_records(data_frame): | |
records = data_frame.to_dict(orient="records") | |
# Handle potential NaT values | |
for record in records: | |
for key, value in record.items(): | |
# List values | |
if isinstance(value, list): | |
processed_list = [None if pd.isnull(v) else v for v in value] | |
record[key] = processed_list | |
# Scalar values | |
else: | |
if pd.isnull(value): | |
record[key] = None | |
try: | |
# Convert each dictionary to a Listing instance | |
return [Listing(**record).dict() for record in records] | |
except ValidationError as e: | |
print("Validation error:", e) | |
return [] | |
def vector_search(openai_api_key, user_query, db, collection, additional_stages=[], vector_index="vector_index_text"): | |
""" | |
Perform a vector search in the MongoDB collection based on the user query. | |
Args: | |
user_query (str): The user's query string. | |
db (MongoClient.database): The database object. | |
collection (MongoCollection): The MongoDB collection to search. | |
additional_stages (list): Additional aggregation stages to include in the pipeline. | |
Returns: | |
list: A list of matching documents. | |
""" | |
# Generate embedding for the user query | |
query_embedding = get_embedding(openai_api_key, user_query) | |
if query_embedding is None: | |
return "Invalid query or embedding generation failed." | |
# Define the vector search stage | |
vector_search_stage = { | |
"$vectorSearch": { | |
"index": vector_index, # specifies the index to use for the search | |
"queryVector": query_embedding, # the vector representing the query | |
"path": "text_embeddings", # field in the documents containing the vectors to search against | |
"numCandidates": 150, # number of candidate matches to consider | |
"limit": 20, # return top 20 matches | |
"filter": { | |
"$and": [ | |
{"accommodates": {"$eq": 2}}, | |
{"bedrooms": {"$eq": 1}} | |
] | |
}, | |
} | |
} | |
# Define the aggregate pipeline with the vector search stage and additional stages | |
pipeline = [vector_search_stage] + additional_stages | |
# Execute the search | |
results = collection.aggregate(pipeline) | |
explain_query_execution = db.command( # sends a database command directly to the MongoDB server | |
'explain', { # return information about how MongoDB executes a query or command without actually running it | |
'aggregate': collection.name, # specifies the name of the collection on which the aggregation is performed | |
'pipeline': pipeline, # the aggregation pipeline to analyze | |
'cursor': {} # indicates that default cursor behavior should be used | |
}, | |
verbosity='executionStats') # detailed statistics about the execution of each stage of the aggregation pipeline | |
vector_search_explain = explain_query_execution['stages'][0]['$vectorSearch'] | |
#millis_elapsed = vector_search_explain['explain']['collectStats']['millisElapsed'] | |
print(vector_search_explain) | |
#print(f"Total time for the execution to complete on the database server: {millis_elapsed} milliseconds") | |
return list(results) | |
def get_embedding(openai_api_key, text): | |
"""Generate an embedding for the given text using OpenAI's API.""" | |
# Check for valid input | |
if not text or not isinstance(text, str): | |
return None | |
openai.api_key = openai_api_key | |
try: | |
embedding = openai.embeddings.create( | |
input=text, | |
model="text-embedding-3-small", dimensions=1536).data[0].embedding | |
return embedding | |
except Exception as e: | |
print(f"Error in get_embedding: {e}") | |
return None |