Spaces:
Running
Running
import openai, os, time | |
from datasets import load_dataset | |
from pymongo.collection import Collection | |
from pymongo.errors import OperationFailure | |
from pymongo.mongo_client import MongoClient | |
from pymongo.operations import SearchIndexModel | |
DB_NAME = "airbnb_dataset" | |
COLLECTION_NAME = "listings_reviews" | |
def connect_to_database(): | |
MONGODB_ATLAS_CLUSTER_URI = os.environ["MONGODB_ATLAS_CLUSTER_URI"] | |
mongo_client = MongoClient(MONGODB_ATLAS_CLUSTER_URI, appname="advanced-rag") | |
db = mongo_client.get_database(DB_NAME) | |
collection = db.get_collection(COLLECTION_NAME) | |
return db, collection | |
def rag_ingestion(collection): | |
dataset = load_dataset("bstraehle/airbnb-san-francisco-202403-embed", streaming=True, split="train") | |
collection.delete_many({}) | |
collection.insert_many(dataset) | |
return "Manually create a vector search index (in free tier, this feature is not available via SDK)" | |
def rag_retrieval_naive(openai_api_key, | |
prompt, | |
db, | |
collection, | |
vector_index="vector_index"): | |
# Naive RAG: Semantic search | |
retrieval_result = vector_search_naive( | |
openai_api_key, | |
prompt, | |
db, | |
collection, | |
vector_index | |
) | |
if not retrieval_result: | |
return "No results found." | |
#print("###") | |
#print(retrieval_result) | |
#print("###") | |
return retrieval_result | |
def rag_retrieval_advanced(openai_api_key, | |
prompt, | |
accomodates, | |
bedrooms, | |
db, | |
collection, | |
vector_index="vector_index"): | |
# Advanced RAG: Semantic search plus... | |
# 1a) Pre-retrieval processing: index filter (accomodates, bedrooms) plus... | |
# 1b) Post-retrieval processing: result filter (accomodates, bedrooms) plus... | |
#match_stage = { | |
# "$match": { | |
# "accommodates": { "$eq": 2}, | |
# "bedrooms": { "$eq": 1} | |
# } | |
#} | |
#additional_stages = [match_stage] | |
# 2) Average review score and review count boost, sorted in descending order | |
review_average_stage = { | |
"$addFields": { | |
"averageReviewScore": { | |
"$divide": [ | |
{ | |
"$add": [ | |
"$review_scores_rating", | |
"$review_scores_accuracy", | |
"$review_scores_cleanliness", | |
"$review_scores_checkin", | |
"$review_scores_communication", | |
"$review_scores_location", | |
"$review_scores_value", | |
] | |
}, | |
7 | |
] | |
}, | |
"reviewCountBoost": "$number_of_reviews" | |
} | |
} | |
weighting_stage = { | |
"$addFields": { | |
"combinedScore": { | |
"$add": [ | |
{"$multiply": ["$averageReviewScore", 0.9]}, | |
{"$multiply": ["$reviewCountBoost", 0.1]}, | |
] | |
} | |
} | |
} | |
sorting_stage_sort = { | |
"$sort": {"combinedScore": -1} | |
} | |
additional_stages = [review_average_stage, weighting_stage, sorting_stage_sort] | |
retrieval_result = vector_search_advanced( | |
openai_api_key, | |
prompt, | |
accomodates, | |
bedrooms, | |
db, | |
collection, | |
additional_stages, | |
vector_index | |
) | |
if not retrieval_result: | |
return "No results found." | |
#print("###") | |
#print(retrieval_result) | |
#print("###") | |
return retrieval_result | |
def inference(openai_api_key, prompt): | |
content = f"Answer this user question: {prompt}" | |
return invoke_llm(openai_api_key, content) | |
def rag_inference(openai_api_key, prompt, retrieval_result): | |
content = f"Answer this user question: {prompt} with the following context:\n{retrieval_result}" | |
return invoke_llm(openai_api_key, content) | |
def invoke_llm(openai_api_key, content): | |
openai.api_key = openai_api_key | |
completion = openai.chat.completions.create( | |
model="gpt-4o", | |
messages=[ | |
{ | |
"role": "system", | |
"content": "You are an AirBnB listing recommendation system."}, | |
{ | |
"role": "user", | |
"content": content | |
} | |
] | |
) | |
return completion.choices[0].message.content | |
def vector_search_naive(openai_api_key, | |
user_query, | |
db, | |
collection, | |
vector_index="vector_index"): | |
query_embedding = get_text_embedding(openai_api_key, user_query) | |
if query_embedding is None: | |
return "Invalid query or embedding generation failed." | |
vector_search_stage = { | |
"$vectorSearch": { | |
"index": vector_index, | |
"queryVector": query_embedding, | |
"path": "description_embedding", | |
"numCandidates": 150, | |
"limit": 25, | |
} | |
} | |
remove_embedding_stage = { | |
"$unset": "description_embedding" | |
} | |
pipeline = [vector_search_stage, remove_embedding_stage] | |
return invoke_search(collection, pipeline) | |
def vector_search_advanced(openai_api_key, | |
user_query, | |
accommodates, | |
bedrooms, | |
db, | |
collection, | |
additional_stages=[], | |
vector_index="vector_index"): | |
query_embedding = get_text_embedding(openai_api_key, user_query) | |
if query_embedding is None: | |
return "Invalid query or embedding generation failed." | |
vector_search_stage = { | |
"$vectorSearch": { | |
"index": vector_index, | |
"queryVector": query_embedding, | |
"path": "description_embedding", | |
"numCandidates": 150, | |
"limit": 25, | |
"filter": { | |
"$and": [ | |
{"accommodates": {"$eq": accommodates}}, | |
{"bedrooms": {"$eq": bedrooms}} | |
] | |
}, | |
} | |
} | |
remove_embedding_stage = { | |
"$unset": "description_embedding" | |
} | |
pipeline = [vector_search_stage, remove_embedding_stage] + additional_stages | |
return invoke_search(collection, pipeline) | |
def invoke_search(collection, pipeline): | |
results = collection.aggregate(pipeline) | |
return list(results) | |
def get_text_embedding(openai_api_key, text): | |
if not text or not isinstance(text, str): | |
return None | |
openai.api_key = openai_api_key | |
try: | |
return openai.embeddings.create( | |
input=text, | |
model="text-embedding-3-small", dimensions=1536 | |
).data[0].embedding | |
except Exception as e: | |
print(f"Error in get_embedding: {e}") | |
return None |