bstraehle commited on
Commit
0a57b44
·
verified ·
1 Parent(s): 82fd045

Update custom_utils.py

Browse files
Files changed (1) hide show
  1. custom_utils.py +7 -3
custom_utils.py CHANGED
@@ -26,7 +26,7 @@ def rag_ingestion(collection):
26
  listings = process_records(dataset_df)
27
  collection.delete_many({})
28
  collection.insert_many(listings)
29
- # Manually create a vector search index (in free tier, this feature is not available via SDK)
30
 
31
  def rag_retrieval(openai_api_key, prompt, db, collection, stages=[], vector_index="vector_index"):
32
  # Assuming vector_search returns a list of dictionaries with keys 'title' and 'plot'
@@ -45,6 +45,10 @@ def rag_retrieval(openai_api_key, prompt, db, collection, stages=[], vector_inde
45
  # Convert search results into a DataFrame for better rendering in Jupyter
46
  search_results_df = pd.DataFrame([item.dict() for item in search_results_models])
47
 
 
 
 
 
48
  return search_results_df
49
 
50
  def rag_inference(openai_api_key, prompt, search_results_df):
@@ -69,9 +73,9 @@ def rag_inference(openai_api_key, prompt, search_results_df):
69
  result = completion.choices[0].message.content
70
 
71
  print("###")
72
- print(f"- User Content:\n{content}\n")
73
  print("###")
74
- print(f"- Prompt Completion:\n{result}\n")
75
  print("###")
76
 
77
  return result
 
26
  listings = process_records(dataset_df)
27
  collection.delete_many({})
28
  collection.insert_many(listings)
29
+ return "Manually create a vector search index (in free tier, this feature is not available via SDK)"
30
 
31
  def rag_retrieval(openai_api_key, prompt, db, collection, stages=[], vector_index="vector_index"):
32
  # Assuming vector_search returns a list of dictionaries with keys 'title' and 'plot'
 
45
  # Convert search results into a DataFrame for better rendering in Jupyter
46
  search_results_df = pd.DataFrame([item.dict() for item in search_results_models])
47
 
48
+ print("###")
49
+ print(search_results_df)
50
+ print("###")
51
+
52
  return search_results_df
53
 
54
  def rag_inference(openai_api_key, prompt, search_results_df):
 
73
  result = completion.choices[0].message.content
74
 
75
  print("###")
76
+ print(content)
77
  print("###")
78
+ print(result)
79
  print("###")
80
 
81
  return result