bstraehle commited on
Commit
a086fab
·
verified ·
1 Parent(s): 9e5685a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -31
app.py CHANGED
@@ -1,7 +1,9 @@
1
  import gradio as gr
2
- import logging, os, sys, threading, time
 
3
 
4
  from dotenv import load_dotenv, find_dotenv
 
5
 
6
  lock = threading.Lock()
7
 
@@ -13,14 +15,6 @@ RAG_OFF = "Off"
13
  RAG_NAIVE = "Naive RAG"
14
  RAG_ADVANCED = "Advanced RAG"
15
 
16
- config = {
17
- "chunk_overlap": 100, # split documents
18
- "chunk_size": 2000, # split documents
19
- "k": 2, # retrieve documents
20
- "model_name": "gpt-4-0314", # llm
21
- "temperature": 0 # llm
22
- }
23
-
24
  logging.basicConfig(stream = sys.stdout, level = logging.INFO)
25
  logging.getLogger().addHandler(logging.StreamHandler(stream = sys.stdout))
26
 
@@ -34,21 +28,23 @@ def invoke(openai_api_key, prompt, rag_option):
34
 
35
  with lock:
36
  os.environ["OPENAI_API_KEY"] = openai_api_key
37
-
38
- # if (RAG_INGESTION):
39
- # if (rag_option == RAG_LANGCHAIN):
40
- # #rag = LangChainRAG()
41
- # #rag.ingestion(config)
42
- # elif (rag_option == RAG_LLAMAINDEX):
43
- # #rag = LlamaIndexRAG()
44
- # #rag.ingestion(config)
45
-
46
- completion = ""
47
- result = ""
48
- callback = ""
49
- err_msg = ""
50
 
 
 
 
 
 
 
 
51
  """
 
 
 
 
 
 
 
 
52
  try:
53
  #rag = LangChainRAG()
54
  #completion, callback = rag.rag_chain(config, prompt)
@@ -68,24 +64,18 @@ def invoke(openai_api_key, prompt, rag_option):
68
  del os.environ["OPENAI_API_KEY"]
69
  """
70
 
71
- return ""# result
72
 
73
  gr.close_all()
74
 
75
  demo = gr.Interface(
76
  fn = invoke,
77
  inputs = [gr.Textbox(label = "OpenAI API Key", type = "password", lines = 1),
78
- gr.Textbox(label = "Prompt", value = "List GPT-4's exam scores and benchmark results.", lines = 1),
79
  gr.Radio([RAG_OFF, RAG_NAIVE, RAG_ADVANCED], label = "Retrieval-Augmented Generation", value = RAG_ADVANCED)],
80
  outputs = [gr.Textbox(label = "Completion")],
81
  title = "Context-Aware Reasoning Application",
82
- description = os.environ["DESCRIPTION"],
83
- examples = [["sk-<BringYourOwn>", "What are GPT-4's media capabilities in 5 emojis and 1 sentence?", RAG_ADVANCED],
84
- ["sk-<BringYourOwn>", "List GPT-4's exam scores and benchmark results.", RAG_ADVANCED],
85
- ["sk-<BringYourOwn>", "Compare GPT-4 to GPT-3.5 in markdown table format.", RAG_ADVANCED],
86
- ["sk-<BringYourOwn>", "Write a Python program that calls the GPT-4 API.", RAG_ADVANCED],
87
- ["sk-<BringYourOwn>", "What is the GPT-4 API's cost and rate limit? Answer in English, Arabic, Chinese, Hindi, and Russian in JSON format.", RAG_ADVANCED]],
88
- cache_examples = False
89
  )
90
 
91
  demo.launch()
 
1
  import gradio as gr
2
+ import logging, os, sys, threading
3
+ import pandas as pd
4
 
5
  from dotenv import load_dotenv, find_dotenv
6
+ from datasets import load_dataset
7
 
8
  lock = threading.Lock()
9
 
 
15
  RAG_NAIVE = "Naive RAG"
16
  RAG_ADVANCED = "Advanced RAG"
17
 
 
 
 
 
 
 
 
 
18
  logging.basicConfig(stream = sys.stdout, level = logging.INFO)
19
  logging.getLogger().addHandler(logging.StreamHandler(stream = sys.stdout))
20
 
 
28
 
29
  with lock:
30
  os.environ["OPENAI_API_KEY"] = openai_api_key
 
 
 
 
 
 
 
 
 
 
 
 
 
31
 
32
+ ###
33
+ dataset = load_dataset("MongoDB/airbnb_embeddings", streaming=True, split="train")
34
+ dataset = dataset.take(100)
35
+ dataset_df = pd.DataFrame(dataset)
36
+ dataset_df.head(5)
37
+ ###
38
+
39
  """
40
+ if (RAG_INGESTION):
41
+ if (rag_option == RAG_LANGCHAIN):
42
+ #rag = LangChainRAG()
43
+ #rag.ingestion(config)
44
+ elif (rag_option == RAG_LLAMAINDEX):
45
+ #rag = LlamaIndexRAG()
46
+ #rag.ingestion(config)
47
+
48
  try:
49
  #rag = LangChainRAG()
50
  #completion, callback = rag.rag_chain(config, prompt)
 
64
  del os.environ["OPENAI_API_KEY"]
65
  """
66
 
67
+ return "TODO"
68
 
69
  gr.close_all()
70
 
71
  demo = gr.Interface(
72
  fn = invoke,
73
  inputs = [gr.Textbox(label = "OpenAI API Key", type = "password", lines = 1),
74
+ gr.Textbox(label = "Prompt", value = "TODO", lines = 1),
75
  gr.Radio([RAG_OFF, RAG_NAIVE, RAG_ADVANCED], label = "Retrieval-Augmented Generation", value = RAG_ADVANCED)],
76
  outputs = [gr.Textbox(label = "Completion")],
77
  title = "Context-Aware Reasoning Application",
78
+ description = os.environ["DESCRIPTION"]
 
 
 
 
 
 
79
  )
80
 
81
  demo.launch()