bstraehle commited on
Commit
cf8a3af
·
verified ·
1 Parent(s): 7f1903e

Update custom_utils.py

Browse files
Files changed (1) hide show
  1. custom_utils.py +103 -1
custom_utils.py CHANGED
@@ -263,4 +263,106 @@ def connect_to_database():
263
  db = mongo_client.get_database(DB_NAME)
264
  collection = db.get_collection(COLLECTION_NAME)
265
 
266
- return db, collection
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
263
  db = mongo_client.get_database(DB_NAME)
264
  collection = db.get_collection(COLLECTION_NAME)
265
 
266
+ return db, collection
267
+
268
+ def vector_search(user_query, db, collection, additional_stages=[], vector_index="vector_index_text"):
269
+ """
270
+ Perform a vector search in the MongoDB collection based on the user query.
271
+
272
+ Args:
273
+ user_query (str): The user's query string.
274
+ db (MongoClient.database): The database object.
275
+ collection (MongoCollection): The MongoDB collection to search.
276
+ additional_stages (list): Additional aggregation stages to include in the pipeline.
277
+
278
+ Returns:
279
+ list: A list of matching documents.
280
+ """
281
+
282
+ # Generate embedding for the user query
283
+ query_embedding = custom_utils.get_embedding(user_query)
284
+
285
+ if query_embedding is None:
286
+ return "Invalid query or embedding generation failed."
287
+
288
+ # Define the vector search stage
289
+ vector_search_stage = {
290
+ "$vectorSearch": {
291
+ "index": vector_index, # specifies the index to use for the search
292
+ "queryVector": query_embedding, # the vector representing the query
293
+ "path": "text_embeddings", # field in the documents containing the vectors to search against
294
+ "numCandidates": 150, # number of candidate matches to consider
295
+ "limit": 20, # return top 20 matches
296
+ }
297
+ }
298
+
299
+ # Define the aggregate pipeline with the vector search stage and additional stages
300
+ pipeline = [vector_search_stage] + additional_stages
301
+
302
+ # Execute the search
303
+ results = collection.aggregate(pipeline)
304
+
305
+ explain_query_execution = db.command( # sends a database command directly to the MongoDB server
306
+ 'explain', { # return information about how MongoDB executes a query or command without actually running it
307
+ 'aggregate': collection.name, # specifies the name of the collection on which the aggregation is performed
308
+ 'pipeline': pipeline, # the aggregation pipeline to analyze
309
+ 'cursor': {} # indicates that default cursor behavior should be used
310
+ },
311
+ verbosity='executionStats') # detailed statistics about the execution of each stage of the aggregation pipeline
312
+
313
+ vector_search_explain = explain_query_execution['stages'][0]['$vectorSearch']
314
+ millis_elapsed = vector_search_explain['explain']['collectStats']['millisElapsed']
315
+
316
+ print(f"Total time for the execution to complete on the database server: {millis_elapsed} milliseconds")
317
+
318
+ return list(results)
319
+
320
+ class SearchResultItem(BaseModel):
321
+ name: str
322
+ accommodates: Optional[int] = None
323
+ bedrooms: Optional[int] = None
324
+ address: custom_utils.Address
325
+ space: str = None
326
+
327
+ def handle_user_query(query, db, collection, stages=[], vector_index="vector_index_text"):
328
+ # Assuming vector_search returns a list of dictionaries with keys 'title' and 'plot'
329
+ get_knowledge = vector_search(query, db, collection, stages, vector_index)
330
+
331
+ # Check if there are any results
332
+ if not get_knowledge:
333
+ return "No results found.", "No source information available."
334
+
335
+ # Convert search results into a list of SearchResultItem models
336
+ search_results_models = [
337
+ SearchResultItem(**result)
338
+ for result in get_knowledge
339
+ ]
340
+
341
+ # Convert search results into a DataFrame for better rendering in Jupyter
342
+ search_results_df = pd.DataFrame([item.dict() for item in search_results_models])
343
+
344
+ # Generate system response using OpenAI's completion
345
+ completion = custom_utils.openai.chat.completions.create(
346
+ model="gpt-3.5-turbo",
347
+ messages=[
348
+ {
349
+ "role": "system",
350
+ "content": "You are a airbnb listing recommendation system."},
351
+ {
352
+ "role": "user",
353
+ "content": f"Answer this user query: {query} with the following context:\n{search_results_df}"
354
+ }
355
+ ]
356
+ )
357
+
358
+ system_response = completion.choices[0].message.content
359
+
360
+ # Print User Question, System Response, and Source Information
361
+ print(f"- User Question:\n{query}\n")
362
+ print(f"- System Response:\n{system_response}\n")
363
+
364
+ # Display the DataFrame as an HTML table
365
+ display(HTML(search_results_df.to_html()))
366
+
367
+ # Return structured response and source info as a string
368
+ return system_response