Spaces:
Running
Running
Update custom_utils.py
Browse files- custom_utils.py +103 -1
custom_utils.py
CHANGED
@@ -263,4 +263,106 @@ def connect_to_database():
|
|
263 |
db = mongo_client.get_database(DB_NAME)
|
264 |
collection = db.get_collection(COLLECTION_NAME)
|
265 |
|
266 |
-
return db, collection
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
263 |
db = mongo_client.get_database(DB_NAME)
|
264 |
collection = db.get_collection(COLLECTION_NAME)
|
265 |
|
266 |
+
return db, collection
|
267 |
+
|
268 |
+
def vector_search(user_query, db, collection, additional_stages=[], vector_index="vector_index_text"):
|
269 |
+
"""
|
270 |
+
Perform a vector search in the MongoDB collection based on the user query.
|
271 |
+
|
272 |
+
Args:
|
273 |
+
user_query (str): The user's query string.
|
274 |
+
db (MongoClient.database): The database object.
|
275 |
+
collection (MongoCollection): The MongoDB collection to search.
|
276 |
+
additional_stages (list): Additional aggregation stages to include in the pipeline.
|
277 |
+
|
278 |
+
Returns:
|
279 |
+
list: A list of matching documents.
|
280 |
+
"""
|
281 |
+
|
282 |
+
# Generate embedding for the user query
|
283 |
+
query_embedding = custom_utils.get_embedding(user_query)
|
284 |
+
|
285 |
+
if query_embedding is None:
|
286 |
+
return "Invalid query or embedding generation failed."
|
287 |
+
|
288 |
+
# Define the vector search stage
|
289 |
+
vector_search_stage = {
|
290 |
+
"$vectorSearch": {
|
291 |
+
"index": vector_index, # specifies the index to use for the search
|
292 |
+
"queryVector": query_embedding, # the vector representing the query
|
293 |
+
"path": "text_embeddings", # field in the documents containing the vectors to search against
|
294 |
+
"numCandidates": 150, # number of candidate matches to consider
|
295 |
+
"limit": 20, # return top 20 matches
|
296 |
+
}
|
297 |
+
}
|
298 |
+
|
299 |
+
# Define the aggregate pipeline with the vector search stage and additional stages
|
300 |
+
pipeline = [vector_search_stage] + additional_stages
|
301 |
+
|
302 |
+
# Execute the search
|
303 |
+
results = collection.aggregate(pipeline)
|
304 |
+
|
305 |
+
explain_query_execution = db.command( # sends a database command directly to the MongoDB server
|
306 |
+
'explain', { # return information about how MongoDB executes a query or command without actually running it
|
307 |
+
'aggregate': collection.name, # specifies the name of the collection on which the aggregation is performed
|
308 |
+
'pipeline': pipeline, # the aggregation pipeline to analyze
|
309 |
+
'cursor': {} # indicates that default cursor behavior should be used
|
310 |
+
},
|
311 |
+
verbosity='executionStats') # detailed statistics about the execution of each stage of the aggregation pipeline
|
312 |
+
|
313 |
+
vector_search_explain = explain_query_execution['stages'][0]['$vectorSearch']
|
314 |
+
millis_elapsed = vector_search_explain['explain']['collectStats']['millisElapsed']
|
315 |
+
|
316 |
+
print(f"Total time for the execution to complete on the database server: {millis_elapsed} milliseconds")
|
317 |
+
|
318 |
+
return list(results)
|
319 |
+
|
320 |
+
class SearchResultItem(BaseModel):
|
321 |
+
name: str
|
322 |
+
accommodates: Optional[int] = None
|
323 |
+
bedrooms: Optional[int] = None
|
324 |
+
address: custom_utils.Address
|
325 |
+
space: str = None
|
326 |
+
|
327 |
+
def handle_user_query(query, db, collection, stages=[], vector_index="vector_index_text"):
|
328 |
+
# Assuming vector_search returns a list of dictionaries with keys 'title' and 'plot'
|
329 |
+
get_knowledge = vector_search(query, db, collection, stages, vector_index)
|
330 |
+
|
331 |
+
# Check if there are any results
|
332 |
+
if not get_knowledge:
|
333 |
+
return "No results found.", "No source information available."
|
334 |
+
|
335 |
+
# Convert search results into a list of SearchResultItem models
|
336 |
+
search_results_models = [
|
337 |
+
SearchResultItem(**result)
|
338 |
+
for result in get_knowledge
|
339 |
+
]
|
340 |
+
|
341 |
+
# Convert search results into a DataFrame for better rendering in Jupyter
|
342 |
+
search_results_df = pd.DataFrame([item.dict() for item in search_results_models])
|
343 |
+
|
344 |
+
# Generate system response using OpenAI's completion
|
345 |
+
completion = custom_utils.openai.chat.completions.create(
|
346 |
+
model="gpt-3.5-turbo",
|
347 |
+
messages=[
|
348 |
+
{
|
349 |
+
"role": "system",
|
350 |
+
"content": "You are a airbnb listing recommendation system."},
|
351 |
+
{
|
352 |
+
"role": "user",
|
353 |
+
"content": f"Answer this user query: {query} with the following context:\n{search_results_df}"
|
354 |
+
}
|
355 |
+
]
|
356 |
+
)
|
357 |
+
|
358 |
+
system_response = completion.choices[0].message.content
|
359 |
+
|
360 |
+
# Print User Question, System Response, and Source Information
|
361 |
+
print(f"- User Question:\n{query}\n")
|
362 |
+
print(f"- System Response:\n{system_response}\n")
|
363 |
+
|
364 |
+
# Display the DataFrame as an HTML table
|
365 |
+
display(HTML(search_results_df.to_html()))
|
366 |
+
|
367 |
+
# Return structured response and source info as a string
|
368 |
+
return system_response
|