File size: 1,168 Bytes
242965f
77c225f
e8da79a
fc7e5cb
5e8e222
4386276
e8da79a
3d0e861
e8da79a
 
7cfc686
 
c74f41d
8b55e49
3b3f196
7cfc686
747a549
37d316b
77c225f
 
 
c74f41d
77c225f
 
eccf9ba
e8da79a
 
 
 
 
e40b271
d015f88
77c225f
2dead2b
e8da79a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import gradio as gr
import agentops, os

from crew import get_crew

LLM = "gpt-3.5-turbo"

def invoke(openai_api_key, topic):
    if (openai_api_key == ""):
        raise gr.Error("OpenAI API Key is required.")
    if (topic == ""):
        raise gr.Error("Topic is required.")

    os.environ["OPENAI_API_KEY"] = openai_api_key
    #os.environ["SERPER_API_KEY"] = serper_api_key

    AGENTOPS_API_KEY = os.environ["AGENTOPS_API_KEY"]

    #logging.basicConfig(level=logging.DEBUG)
    
    #openai = OpenAI(api_key=OPENAI_API_KEY)
    
    agentops.init(AGENTOPS_API_KEY)

    return get_crew(LLM).kickoff(inputs={"topic": topic})

gr.close_all()

demo = gr.Interface(fn = invoke, 
                    inputs = [gr.Textbox(label = "OpenAI API Key", type = "password", lines = 1),
                              gr.Textbox(label = "Topic", value="Evolution of Retrieval-Augmented Generation from Naive RAG to Advanced RAG to Agentic RAG", lines = 1)],
                    outputs = [gr.Textbox(label = "Output", lines = 1)],
                    title = "Agentic RAG: LinkedIn Post Generation",
                    description = os.environ["DESCRIPTION"])

demo.launch()