Spaces:
Running
Running
import gradio as gr | |
import agentops, os | |
from crew import get_crew | |
LLM = "gpt-4o" | |
def invoke(openai_api_key, topic, word_count=500): | |
if (openai_api_key == ""): | |
raise gr.Error("OpenAI API Key is required.") | |
if (topic == ""): | |
raise gr.Error("Topic is required.") | |
agentops.init(os.environ["AGENTOPS_API_KEY"]) | |
os.environ["OPENAI_API_KEY"] = openai_api_key | |
result = get_crew(LLM).kickoff(inputs={"topic": topic, "word_count": word_count}) | |
print("###") | |
print(result) | |
print("###") | |
return result | |
gr.close_all() | |
demo = gr.Interface(fn = invoke, | |
inputs = [gr.Textbox(label = "OpenAI API Key", type = "password", lines = 1), | |
gr.Textbox(label = "Topic", value=os.environ["TOPIC"], lines = 1), | |
gr.Number(label = "Word Count", value=500, minimum=500, maximum=5000)], | |
outputs = [gr.Markdown(label = "Generated Blog Post", value=os.environ["OUTPUT"])], | |
title = "Multi-Agent RAG: Blog Post Generation", | |
description = os.environ["DESCRIPTION"]) | |
demo.launch() |