File size: 3,574 Bytes
7d6d701
9621cc7
7d6d701
6f02f68
 
 
1ad0dcf
 
6f02f68
 
 
 
1ad0dcf
7d6d701
 
 
9ed9edc
7d6d701
c8f85cc
dffbc3f
52f3a4a
6f02f68
752918c
b610816
7e9c595
 
9ed9edc
 
0dc5da4
7e9c595
57e6710
 
 
 
 
 
 
 
 
7e9c595
6f02f68
ac4cc68
4b7a531
6f02f68
7d6d701
3e7c183
7e9c595
58981a1
1706437
 
290e7c0
7d6d701
 
 
57e6710
9ed9edc
908ded3
7d6d701
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import gradio as gr
import shutil, openai, os

from langchain.chains import RetrievalQA
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders.blob_loaders.youtube_audio import YoutubeAudioLoader
from langchain.document_loaders.generic import GenericLoader
from langchain.document_loaders.parsers import OpenAIWhisperParser
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.prompts import PromptTemplate
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma

from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv())

#openai.api_key = os.environ["OPENAI_API_KEY"]

template = """Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up 
              an answer. Keep the answer as concise as possible. Always say "🔥 Thanks for using the app, Bernd Straehle." at the end of the answer. 
              {context} Question: {question} Helpful Answer: """

QA_CHAIN_PROMPT = PromptTemplate(input_variables = ["context", "question"], template = template)

print(0)

def invoke(openai_api_key, youtube_url, prompt):
    openai.api_key = openai_api_key
    if (os.path.isdir("docs/chroma/") == False):
        print(1)
        youtube_dir = "docs/youtube/"
        loader = GenericLoader(YoutubeAudioLoader([youtube_url], youtube_dir), OpenAIWhisperParser())
        docs = loader.load()
        text_splitter = RecursiveCharacterTextSplitter(chunk_size = 1500, chunk_overlap = 150)
        splits = text_splitter.split_documents(docs)
        chroma_dir = "docs/chroma/"
        vectordb = Chroma.from_documents(documents = splits, embedding = OpenAIEmbeddings(), persist_directory = chroma_dir)
        llm = ChatOpenAI(model_name = "gpt-4", temperature = 0)
        qa_chain = RetrievalQA.from_chain_type(llm, retriever = vectordb.as_retriever(), return_source_documents = True, chain_type_kwargs = {"prompt": QA_CHAIN_PROMPT})
    print(2)
    result = qa_chain({"query": prompt})
    shutil.rmtree(youtube_dir)
    #shutil.rmtree(chroma_dir)
    return result["result"]

description = """The app demonstrates how to use a <strong>Large Language Model</strong> (LLM) with <strong>Retrieval Augmented Generation</strong> (RAG) on external data. 
                 Enter an OpenAI API key, YouTube URL (external data), and prompt to perform semantic search, sentiment analysis, summarization, translation, etc.\n\n
                 Implementation: <a href='https://www.gradio.app/'>Gradio</a> UI using <a href='https://platform.openai.com/'>OpenAI</a> API 
                 via AI-first <a href='https://www.langchain.com/'>LangChain</a> toolkit with <a href='https://openai.com/research/whisper'>Whisper</a> (speech to text) 
                 and <a href='https://openai.com/research/gpt-4'>GPT-4</a> (LLM use cases) foundation models as well as AI-native 
                 <a href='https://www.trychroma.com/'>Chroma</a> embedding database."""

gr.close_all()
demo = gr.Interface(fn=invoke, 
                    inputs = [gr.Textbox(label = "OpenAI API Key", value = "sk-", lines = 1), gr.Textbox(label = "YouTube URL", value = "https://www.youtube.com/watch?v=--khbXchTeE", lines = 1), gr.Textbox(label = "Prompt", value = "GPT-4 human level performance", lines = 1)],
                    outputs = [gr.Textbox(label = "Completion", lines = 1)],
                    title = "Generative AI - LLM & RAG",
                    description = description)
demo.launch()