|
import gradio as gr |
|
import openai, os |
|
|
|
from langchain.chains import LLMChain, RetrievalQA |
|
from langchain.chat_models import ChatOpenAI |
|
from langchain.document_loaders.blob_loaders.youtube_audio import YoutubeAudioLoader |
|
from langchain.document_loaders.generic import GenericLoader |
|
from langchain.document_loaders.parsers import OpenAIWhisperParser |
|
from langchain.embeddings.openai import OpenAIEmbeddings |
|
from langchain.prompts import PromptTemplate |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
from langchain.vectorstores import Chroma |
|
|
|
from dotenv import load_dotenv, find_dotenv |
|
_ = load_dotenv(find_dotenv()) |
|
|
|
|
|
|
|
template = """If you don't know the answer, just say that you don't know, don't try to make up an answer. Keep the answer as concise as possible. Always say |
|
"🔥 Thanks for using the app - Bernd Straehle." at the end of the answer. """ |
|
|
|
llm_template = "Answer the question at the end. " + template + "Question: {question} Helpful Answer: " |
|
rag_template = "Use the following pieces of context to answer the question at the end. " + template + "{context} Question: {question} Helpful Answer: " |
|
|
|
LLM_CHAIN_PROMPT = PromptTemplate(input_variables = ["question"], |
|
template = llm_template) |
|
RAG_CHAIN_PROMPT = PromptTemplate(input_variables = ["context", "question"], |
|
template = rag_template) |
|
|
|
CHROMA_DIR = "/data/chroma" |
|
YOUTUBE_DIR = "/data/youtube" |
|
|
|
YOUTUBE_URL_1 = "https://www.youtube.com/watch?v=--khbXchTeE" |
|
YOUTUBE_URL_2 = "https://www.youtube.com/watch?v=hdhZwyf24mE" |
|
YOUTUBE_URL_3 = "https://www.youtube.com/watch?v=vw-KWfKwvTQ" |
|
|
|
YOUTUBE_URL_4 = "https://www.youtube.com/shorts/3x95mw35dJY" |
|
YOUTUBE_URL_5 = "https://www.youtube.com/shorts/zg-DS23wq0c" |
|
YOUTUBE_URL_6 = "https://www.youtube.com/shorts/cS4fyhKZ8bQ" |
|
|
|
MODEL_NAME = "gpt-4" |
|
|
|
def invoke(openai_api_key, use_rag, prompt): |
|
llm = ChatOpenAI(model_name = MODEL_NAME, |
|
openai_api_key = openai_api_key, |
|
temperature = 0) |
|
if (use_rag): |
|
Document loading, splitting, and storage |
|
loader = GenericLoader(YoutubeAudioLoader([YOUTUBE_URL_01, |
|
YOUTUBE_URL_02, |
|
YOUTUBE_URL_03, |
|
YOUTUBE_URL_04, |
|
YOUTUBE_URL_05, |
|
YOUTUBE_URL_06], YOUTUBE_DIR), |
|
OpenAIWhisperParser()) |
|
docs = loader.load() |
|
text_splitter = RecursiveCharacterTextSplitter(chunk_overlap = 150, |
|
chunk_size = 1500) |
|
splits = text_splitter.split_documents(docs) |
|
vector_db = Chroma.from_documents(documents = splits, |
|
embedding = OpenAIEmbeddings(), |
|
persist_directory = CHROMA_DIR) |
|
|
|
vector_db = Chroma(embedding_function = OpenAIEmbeddings(), |
|
persist_directory = CHROMA_DIR) |
|
rag_chain = RetrievalQA.from_chain_type(llm, |
|
chain_type_kwargs = {"prompt": RAG_CHAIN_PROMPT}, |
|
retriever = vector_db.as_retriever(search_kwargs = {"k": 3}), |
|
return_source_documents = True) |
|
result = rag_chain({"query": prompt}) |
|
result = result["result"] |
|
else: |
|
chain = LLMChain(llm = llm, prompt = LLM_CHAIN_PROMPT) |
|
result = chain.run({"question": prompt}) |
|
return result |
|
|
|
description = """<strong>Overview:</strong> The app demonstrates how to use a Large Language Model (LLM) with Retrieval Augmented Generation (RAG) on external data |
|
(in this case YouTube videos about GPT-4, but it could be PDFs, URLs, or other <a href='https://raw.githubusercontent.com/bstraehle/ai-ml-dl/c38b224c196fc984aab6b6cc6bdc666f8f4fbcff/langchain/document-loaders.png'>data sources</a>).\n\n |
|
<strong>Instructions:</strong> Enter an OpenAI API key and perform LLM use cases (semantic search, sentiment analysis, summarization, translation, etc.) |
|
<ul style="list-style-type:square;"> |
|
<li>Set "Retrieval Augmented Generation" to "<strong>False</strong>" and submit prompt "explain gpt-4". The LLM <strong>without</strong> RAG does not know the answer.</li> |
|
<li>Set "Retrieval Augmented Generation" to "<strong>True</strong>" and submit prompt "explain gpt-4". The LLM <strong>with</strong> RAG knows the answer.</li> |
|
<li>Experiment with different prompts, for example "explain gpt-4 in german", "list pros and cons of gpt-4", or "write a poem about gpt-4".</li> |
|
</ul>\n\n |
|
<strong>Technology:</strong> <a href='https://www.gradio.app/'>Gradio</a> UI using <a href='https://platform.openai.com/'>OpenAI</a> API via AI-first |
|
<a href='https://www.langchain.com/'>LangChain</a> toolkit with <a href='https://openai.com/research/whisper'>Whisper</a> (speech-to-text) and |
|
<a href='https://openai.com/research/gpt-4'>GPT-4</a> (LLM) foundation models as well as AI-native <a href='https://www.trychroma.com/'>Chroma</a> |
|
embedding database.""" |
|
|
|
gr.close_all() |
|
demo = gr.Interface(fn=invoke, |
|
inputs = [gr.Textbox(label = "OpenAI API Key", value = "sk-", lines = 1), |
|
gr.Radio([True, False], label="Retrieval Augmented Generation", value = False), |
|
gr.Textbox(label = "Prompt", value = "explain gpt-4", lines = 1)], |
|
outputs = [gr.Textbox(label = "Completion", lines = 1)], |
|
title = "Generative AI - LLM & RAG", |
|
description = description) |
|
demo.launch() |