rag / app.py
bstraehle's picture
Update app.py
2db1016
raw
history blame
6.08 kB
import gradio as gr
import openai, os
from langchain.chains import LLMChain, RetrievalQA
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders.blob_loaders.youtube_audio import YoutubeAudioLoader
from langchain.document_loaders.generic import GenericLoader
from langchain.document_loaders.parsers import OpenAIWhisperParser
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.prompts import PromptTemplate
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv())
#openai.api_key = os.environ["OPENAI_API_KEY"]
template = """If you don't know the answer, just say that you don't know, don't try to make up an answer. Keep the answer as concise as possible. Always say
"🔥 Thanks for using the app - Bernd Straehle." at the end of the answer. """
llm_template = "Answer the question at the end. " + template + "Question: {question} Helpful Answer: "
rag_template = "Use the following pieces of context to answer the question at the end. " + template + "{context} Question: {question} Helpful Answer: "
LLM_CHAIN_PROMPT = PromptTemplate(input_variables = ["question"],
template = llm_template)
RAG_CHAIN_PROMPT = PromptTemplate(input_variables = ["context", "question"],
template = rag_template)
CHROMA_DIR = "/data/chroma"
YOUTUBE_DIR = "/data/youtube"
YOUTUBE_URL_1 = "https://www.youtube.com/watch?v=--khbXchTeE"
YOUTUBE_URL_2 = "https://www.youtube.com/watch?v=hdhZwyf24mE"
YOUTUBE_URL_3 = "https://www.youtube.com/watch?v=vw-KWfKwvTQ"
YOUTUBE_URL_4 = "https://www.youtube.com/shorts/3x95mw35dJY"
YOUTUBE_URL_5 = "https://www.youtube.com/shorts/zg-DS23wq0c"
YOUTUBE_URL_6 = "https://www.youtube.com/shorts/cS4fyhKZ8bQ"
MODEL_NAME = "gpt-4"
def invoke(openai_api_key, use_rag, prompt):
llm = ChatOpenAI(model_name = MODEL_NAME,
openai_api_key = openai_api_key,
temperature = 0)
if (use_rag):
Document loading, splitting, and storage
loader = GenericLoader(YoutubeAudioLoader([YOUTUBE_URL_01,
YOUTUBE_URL_02,
YOUTUBE_URL_03,
YOUTUBE_URL_04,
YOUTUBE_URL_05,
YOUTUBE_URL_06], YOUTUBE_DIR),
OpenAIWhisperParser())
docs = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_overlap = 150,
chunk_size = 1500)
splits = text_splitter.split_documents(docs)
vector_db = Chroma.from_documents(documents = splits,
embedding = OpenAIEmbeddings(),
persist_directory = CHROMA_DIR)
# Document retrieval
vector_db = Chroma(embedding_function = OpenAIEmbeddings(),
persist_directory = CHROMA_DIR)
rag_chain = RetrievalQA.from_chain_type(llm,
chain_type_kwargs = {"prompt": RAG_CHAIN_PROMPT},
retriever = vector_db.as_retriever(search_kwargs = {"k": 3}),
return_source_documents = True)
result = rag_chain({"query": prompt})
result = result["result"]
else:
chain = LLMChain(llm = llm, prompt = LLM_CHAIN_PROMPT)
result = chain.run({"question": prompt})
return result
description = """<strong>Overview:</strong> The app demonstrates how to use a Large Language Model (LLM) with Retrieval Augmented Generation (RAG) on external data
(in this case YouTube videos about GPT-4, but it could be PDFs, URLs, or other <a href='https://raw.githubusercontent.com/bstraehle/ai-ml-dl/c38b224c196fc984aab6b6cc6bdc666f8f4fbcff/langchain/document-loaders.png'>data sources</a>).\n\n
<strong>Instructions:</strong> Enter an OpenAI API key and perform LLM use cases (semantic search, sentiment analysis, summarization, translation, etc.)
<ul style="list-style-type:square;">
<li>Set "Retrieval Augmented Generation" to "<strong>False</strong>" and submit prompt "explain gpt-4". The LLM <strong>without</strong> RAG does not know the answer.</li>
<li>Set "Retrieval Augmented Generation" to "<strong>True</strong>" and submit prompt "explain gpt-4". The LLM <strong>with</strong> RAG knows the answer.</li>
<li>Experiment with different prompts, for example "explain gpt-4 in german", "list pros and cons of gpt-4", or "write a poem about gpt-4".</li>
</ul>\n\n
<strong>Technology:</strong> <a href='https://www.gradio.app/'>Gradio</a> UI using <a href='https://platform.openai.com/'>OpenAI</a> API via AI-first
<a href='https://www.langchain.com/'>LangChain</a> toolkit with <a href='https://openai.com/research/whisper'>Whisper</a> (speech-to-text) and
<a href='https://openai.com/research/gpt-4'>GPT-4</a> (LLM) foundation models as well as AI-native <a href='https://www.trychroma.com/'>Chroma</a>
embedding database."""
gr.close_all()
demo = gr.Interface(fn=invoke,
inputs = [gr.Textbox(label = "OpenAI API Key", value = "sk-", lines = 1),
gr.Radio([True, False], label="Retrieval Augmented Generation", value = False),
gr.Textbox(label = "Prompt", value = "explain gpt-4", lines = 1)],
outputs = [gr.Textbox(label = "Completion", lines = 1)],
title = "Generative AI - LLM & RAG",
description = description)
demo.launch()