rag / app.py
bstraehle's picture
Update app.py
93ffb86
raw
history blame
1.93 kB
import gradio as gr
import shutil, openai, os
from langchain.document_loaders.generic import GenericLoader
from langchain.document_loaders.parsers import OpenAIWhisperParser
from langchain.document_loaders.blob_loaders.youtube_audio import YoutubeAudioLoader
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv())
#openai.api_key = os.environ["OPENAI_API_KEY"]
def invoke(openai_api_key, youtube_url, prompt):
openai.api_key = openai_api_key
url = youtube_url
save_dir = "docs/youtube/"
loader = GenericLoader(
YoutubeAudioLoader([url], save_dir),
OpenAIWhisperParser()
)
docs = loader.load()
shutil.rmtree(save_dir)
content = docs[0].page_content
#####
#TODO
#####
return content
description = """The app demonstrates how to use a <strong>Large Language Model</strong> (LLM) with <strong>Retrieval Augmented Generation</strong> (RAG) on external data.
Enter an OpenAI API key, YouTube URL (external data), and prompt to search the video, analyse its sentiment, summarize it, translate it, etc.\n\n
Implementation: <a href='https://www.gradio.app/'>Gradio</a> UI using <a href='https://platform.openai.com/'>OpenAI</a> API
via AI-first toolkit <a href='https://www.langchain.com/'>LangChain</a> with foundation models
<a href='https://openai.com/research/whisper'>Whisper</a> (speech to text) and <a href='https://openai.com/research/gpt-4'>GPT-4</a> (LLM use cases)."""
gr.close_all()
demo = gr.Interface(fn=invoke,
inputs = [gr.Textbox(label = "OpenAI API Key", lines = 1), gr.Textbox(label = "YouTube URL", lines = 1), gr.Textbox(label = "Prompt", lines = 1)],
outputs = [gr.Textbox(label = "Completion", lines = 1)],
title = "Generative AI - RAG",
description = description)
demo.launch()