rag / app.py
bstraehle's picture
Update app.py
b7d2e54
raw
history blame
8.21 kB
import gradio as gr
import langchain, openai, os, time, wandb
from langchain.chains import LLMChain, RetrievalQA
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import PyPDFLoader, WebBaseLoader
from langchain.document_loaders.blob_loaders.youtube_audio import YoutubeAudioLoader
from langchain.document_loaders.generic import GenericLoader
from langchain.document_loaders.parsers import OpenAIWhisperParser
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.prompts import PromptTemplate
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.vectorstores import MongoDBAtlasVectorSearch
from pymongo import MongoClient
from wandb.sdk.data_types.trace_tree import Trace
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv())
WANDB_API_KEY = os.environ["WANDB_API_KEY"]
MONGODB_URI = os.environ["MONGODB_ATLAS_CLUSTER_URI"]
client = MongoClient(MONGODB_URI)
MONGODB_DB_NAME = "langchain_db"
MONGODB_COLLECTION_NAME = "gpt-4"
MONGODB_COLLECTION = client[MONGODB_DB_NAME][MONGODB_COLLECTION_NAME]
MONGODB_INDEX_NAME = "default"
description = os.environ["DESCRIPTION"]
config = {
"chunk_overlap": 150,
"chunk_size": 1500,
"k": 3,
"model": "gpt-4",
"temperature": 0,
}
langchain.verbose = True
template = """If you don't know the answer, just say that you don't know, don't try to make up an answer. Keep the answer as concise as possible. Always say "Thanks for using the 🧠 app - Bernd" at the end of the answer. """
llm_template = "Answer the question at the end. " + template + "Question: {question} Helpful Answer: "
rag_template = "Use the following pieces of context to answer the question at the end. " + template + "{context}. Question: {question} Helpful Answer: "
LLM_CHAIN_PROMPT = PromptTemplate(input_variables = ["question"], template = llm_template)
RAG_CHAIN_PROMPT = PromptTemplate(input_variables = ["context", "question"], template = rag_template)
CHROMA_DIR = "/data/chroma"
YOUTUBE_DIR = "/data/youtube"
PDF_URL = "https://arxiv.org/pdf/2303.08774.pdf"
WEB_URL = "https://openai.com/research/gpt-4"
YOUTUBE_URL_1 = "https://www.youtube.com/watch?v=--khbXchTeE"
YOUTUBE_URL_2 = "https://www.youtube.com/watch?v=hdhZwyf24mE"
YOUTUBE_URL_3 = "https://www.youtube.com/watch?v=vw-KWfKwvTQ"
def document_loading_splitting():
# Document loading
docs = []
# Load PDF
loader = PyPDFLoader(PDF_URL)
docs.extend(loader.load())
# Load Web
loader = WebBaseLoader(WEB_URL)
docs.extend(loader.load())
# Load YouTube
loader = GenericLoader(YoutubeAudioLoader([YOUTUBE_URL_1,
YOUTUBE_URL_2,
YOUTUBE_URL_3], YOUTUBE_DIR),
OpenAIWhisperParser())
docs.extend(loader.load())
# Document splitting
text_splitter = RecursiveCharacterTextSplitter(chunk_overlap = config["chunk_overlap"],
chunk_size = config["chunk_size"])
splits = text_splitter.split_documents(docs)
return splits
def document_storage_chroma(splits):
Chroma.from_documents(documents = splits,
embedding = OpenAIEmbeddings(disallowed_special = ()),
persist_directory = CHROMA_DIR)
def document_storage_mongodb(splits):
MongoDBAtlasVectorSearch.from_documents(documents = splits,
embedding = OpenAIEmbeddings(disallowed_special = ()),
collection = MONGODB_COLLECTION,
index_name = MONGODB_INDEX_NAME)
def document_retrieval_chroma(llm, prompt):
db = Chroma(embedding_function = OpenAIEmbeddings(),
persist_directory = CHROMA_DIR)
return db
def document_retrieval_mongodb(llm, prompt):
db = MongoDBAtlasVectorSearch.from_connection_string(MONGODB_URI,
MONGODB_DB_NAME + "." + MONGODB_COLLECTION_NAME,
OpenAIEmbeddings(disallowed_special = ()),
index_name = MONGODB_INDEX_NAME)
return db
def llm_chain(llm, prompt):
llm_chain = LLMChain(llm = llm, prompt = LLM_CHAIN_PROMPT)
completion = llm_chain.run({"question": prompt})
return completion
def rag_chain(llm, prompt, db):
rag_chain = RetrievalQA.from_chain_type(llm,
chain_type_kwargs = {"prompt": RAG_CHAIN_PROMPT},
retriever = db.as_retriever(search_kwargs = {"k": config["k"]}),
return_source_documents = True)
completion = rag_chain({"query": prompt})
return completion
def wandb_trace(rag_option, prompt, completion, status_msg, start_time_ms, end_time_ms):
wandb.init(project = "openai-llm-rag")
trace = Trace(
kind = "chain",
name = "LLMChain" if (rag_option == "Off") else "RetrievalQA",
status_code = "SUCCESS" if (str(status_msg) == "") else "ERROR",
status_message = str(status_msg),
metadata={
"chunk_overlap": "" if (rag_option == "Off") else config["chunk_overlap"],
"chunk_size": "" if (rag_option == "Off") else config["chunk_size"],
"k": "" if (rag_option == "Off") else config["k"],
"model": config["model"],
"temperature": config["temperature"],
},
inputs = {"rag_option": rag_option if (str(status_msg) == "") else "",
"prompt": str(prompt if (str(status_msg) == "") else ""),
"prompt_template": str((llm_template if (rag_option == "Off") else rag_template) if (str(status_msg) == "") else "")},
outputs = {"completion": str(completion)},
start_time_ms = start_time_ms,
end_time_ms = end_time_ms
)
trace.log("test")
wandb.finish()
def invoke(openai_api_key, rag_option, prompt):
if (openai_api_key == ""):
raise gr.Error("OpenAI API Key is required.")
if (rag_option is None):
raise gr.Error("Retrieval Augmented Generation is required.")
if (prompt == ""):
raise gr.Error("Prompt is required.")
completion = ""
result = ""
status_msg = ""
try:
start_time_ms = round(time.time() * 1000)
llm = ChatOpenAI(model_name = config["model"],
openai_api_key = openai_api_key,
temperature = config["temperature"])
if (rag_option == "Chroma"):
#splits = document_loading_splitting()
#document_storage_chroma(splits)
db = document_retrieval_chroma(llm, prompt)
completion = rag_chain(llm, prompt, db)
result = completion["result"]
elif (rag_option == "MongoDB"):
#splits = document_loading_splitting()
#document_storage_mongodb(splits)
db = document_retrieval_mongodb(llm, prompt)
completion = rag_chain(llm, prompt, db)
result = completion["result"]
else:
result = llm_chain(llm, prompt)
completion = result
except Exception as e:
status_msg = e
raise gr.Error(e)
finally:
end_time_ms = round(time.time() * 1000)
wandb_trace(rag_option, prompt, completion, status_msg, start_time_ms, end_time_ms)
return result
gr.close_all()
demo = gr.Interface(fn=invoke,
inputs = [gr.Textbox(label = "OpenAI API Key", value = "sk-", lines = 1),
gr.Radio(["Off", "Chroma", "MongoDB"], label="Retrieval Augmented Generation", value = "Off"),
gr.Textbox(label = "Prompt", value = "What is GPT-4?", lines = 1)],
outputs = [gr.Textbox(label = "Completion", lines = 1)],
title = "Generative AI - LLM & RAG",
description = description)
demo.launch()