rag / app.py
bstraehle's picture
Update app.py
fd30064
raw
history blame
9.41 kB
import gradio as gr
import openai, os, time, wandb
from dotenv import load_dotenv, find_dotenv
from langchain.chains import LLMChain, RetrievalQA
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import PyPDFLoader, WebBaseLoader
from langchain.document_loaders.blob_loaders.youtube_audio import YoutubeAudioLoader
from langchain.document_loaders.generic import GenericLoader
from langchain.document_loaders.parsers import OpenAIWhisperParser
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.prompts import PromptTemplate
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.vectorstores import MongoDBAtlasVectorSearch
from pymongo import MongoClient
from wandb.sdk.data_types.trace_tree import Trace
_ = load_dotenv(find_dotenv())
PDF_URL = "https://arxiv.org/pdf/2303.08774.pdf"
WEB_URL = "https://openai.com/research/gpt-4"
YOUTUBE_URL_1 = "https://www.youtube.com/watch?v=--khbXchTeE"
YOUTUBE_URL_2 = "https://www.youtube.com/watch?v=hdhZwyf24mE"
YOUTUBE_URL_3 = "https://www.youtube.com/watch?v=vw-KWfKwvTQ"
YOUTUBE_DIR = "/data/youtube"
CHROMA_DIR = "/data/chroma"
MONGODB_ATLAS_CLUSTER_URI = os.environ["MONGODB_ATLAS_CLUSTER_URI"]
MONGODB_DB_NAME = "langchain_db"
MONGODB_COLLECTION_NAME = "gpt-4"
MONGODB_INDEX_NAME = "default"
LLM_CHAIN_PROMPT = PromptTemplate(input_variables = ["question"], template = os.environ["LLM_TEMPLATE"])
RAG_CHAIN_PROMPT = PromptTemplate(input_variables = ["context", "question"], template = os.environ["RAG_TEMPLATE"])
WANDB_API_KEY = os.environ["WANDB_API_KEY"]
RAG_OFF = "Off"
RAG_CHROMA = "Chroma"
RAG_MONGODB = "MongoDB"
client = MongoClient(MONGODB_ATLAS_CLUSTER_URI)
collection = client[MONGODB_DB_NAME][MONGODB_COLLECTION_NAME]
config = {
"chunk_overlap": 150,
"chunk_size": 1500,
"k": 3,
"model_name": "gpt-4",
"temperature": 0,
}
def document_loading_splitting():
# Document loading
docs = []
# Load PDF
loader = PyPDFLoader(PDF_URL)
docs.extend(loader.load())
# Load Web
loader = WebBaseLoader(WEB_URL)
docs.extend(loader.load())
# Load YouTube
loader = GenericLoader(YoutubeAudioLoader([YOUTUBE_URL_1,
YOUTUBE_URL_2,
YOUTUBE_URL_3], YOUTUBE_DIR),
OpenAIWhisperParser())
docs.extend(loader.load())
# Document splitting
text_splitter = RecursiveCharacterTextSplitter(chunk_overlap = config["chunk_overlap"],
chunk_size = config["chunk_size"])
split_documents = text_splitter.split_documents(docs)
return split_documents
def document_storage_chroma(documents):
Chroma.from_documents(documents = documents,
embedding = OpenAIEmbeddings(disallowed_special = ()),
persist_directory = CHROMA_DIR)
def document_storage_mongodb(documents):
MongoDBAtlasVectorSearch.from_documents(documents = documents,
embedding = OpenAIEmbeddings(disallowed_special = ()),
collection = collection,
index_name = MONGODB_INDEX_NAME)
def document_retrieval_chroma(llm, prompt):
return Chroma(embedding_function = OpenAIEmbeddings(),
persist_directory = CHROMA_DIR)
def document_retrieval_mongodb(llm, prompt):
return MongoDBAtlasVectorSearch.from_connection_string(MONGODB_ATLAS_CLUSTER_URI,
MONGODB_DB_NAME + "." + MONGODB_COLLECTION_NAME,
OpenAIEmbeddings(disallowed_special = ()),
index_name = MONGODB_INDEX_NAME)
def llm_chain(llm, prompt):
llm_chain = LLMChain(llm = llm,
prompt = LLM_CHAIN_PROMPT,
verbose = False)
completion = llm_chain.generate([{"question": prompt}])
return completion, llm_chain
def rag_chain(llm, prompt, db):
rag_chain = RetrievalQA.from_chain_type(llm,
chain_type_kwargs = {"prompt": RAG_CHAIN_PROMPT},
retriever = db.as_retriever(search_kwargs = {"k": config["k"]}),
return_source_documents = True,
verbose = False)
completion = rag_chain({"query": prompt})
return completion, rag_chain
def wandb_trace(rag_option, prompt, completion, result, generation_info, llm_output, chain, err_msg, start_time_ms, end_time_ms):
wandb.init(project = "openai-llm-rag")
trace = Trace(
kind = "chain",
name = "" if (chain == None) else type(chain).__name__,
status_code = "success" if (str(err_msg) == "") else "error",
status_message = str(err_msg),
metadata = {"chunk_overlap": "" if (rag_option == RAG_OFF) else config["chunk_overlap"],
"chunk_size": "" if (rag_option == RAG_OFF) else config["chunk_size"],
} if (str(err_msg) == "") else {},
inputs = {"rag_option": rag_option,
"prompt": prompt,
} if (str(err_msg) == "") else {},
outputs = {"result": result,
"generation_info": str(generation_info),
"llm_output": str(llm_output),
"completion": str(completion),
} if (str(err_msg) == "") else {},
model_dict = {"client": (str(chain.llm.client) if (rag_option == RAG_OFF) else
str(chain.combine_documents_chain.llm_chain.llm.client)),
"model_name": (str(chain.llm.model_name) if (rag_option == RAG_OFF) else
str(chain.combine_documents_chain.llm_chain.llm.model_name)),
"temperature": (str(chain.llm.temperature) if (rag_option == RAG_OFF) else
str(chain.combine_documents_chain.llm_chain.llm.temperature)),
"prompt": (str(chain.prompt) if (rag_option == RAG_OFF) else
str(chain.combine_documents_chain.llm_chain.prompt)),
"retriever": ("" if (rag_option == RAG_OFF) else str(chain.retriever)),
} if (str(err_msg) == "") else {},
start_time_ms = start_time_ms,
end_time_ms = end_time_ms
)
trace.log("evaluation")
wandb.finish()
def invoke(openai_api_key, rag_option, prompt):
if (openai_api_key == ""):
raise gr.Error("OpenAI API Key is required.")
if (rag_option is None):
raise gr.Error("Retrieval Augmented Generation is required.")
if (prompt == ""):
raise gr.Error("Prompt is required.")
chain = None
completion = ""
result = ""
generation_info = ""
llm_output = ""
err_msg = ""
try:
start_time_ms = round(time.time() * 1000)
llm = ChatOpenAI(model_name = config["model_name"],
openai_api_key = openai_api_key,
temperature = config["temperature"])
if (rag_option == RAG_CHROMA):
#splits = document_loading_splitting()
#document_storage_chroma(splits)
db = document_retrieval_chroma(llm, prompt)
completion, chain = rag_chain(llm, prompt, db)
result = completion["result"]
elif (rag_option == RAG_MONGODB):
#splits = document_loading_splitting()
#document_storage_mongodb(splits)
db = document_retrieval_mongodb(llm, prompt)
completion, chain = rag_chain(llm, prompt, db)
result = completion["result"]
else:
completion, chain = llm_chain(llm, prompt)
if (completion.generations[0] != None and completion.generations[0][0] != None):
result = completion.generations[0][0].text
generation_info = completion.generations[0][0].generation_info
llm_output = completion.llm_output
except Exception as e:
err_msg = e
raise gr.Error(e)
finally:
end_time_ms = round(time.time() * 1000)
wandb_trace(rag_option, prompt, completion, result, generation_info, llm_output, chain, err_msg, start_time_ms, end_time_ms)
return result
gr.close_all()
demo = gr.Interface(fn=invoke,
inputs = [gr.Textbox(label = "OpenAI API Key", type = "password", lines = 1),
gr.Radio([RAG_OFF, RAG_CHROMA, RAG_MONGODB], label = "Retrieval Augmented Generation", value = RAG_OFF),
gr.Textbox(label = "Prompt", value = "What are GPT-4's media capabilities in 5 emojis and 1 sentence?", lines = 1),
],
outputs = [gr.Textbox(label = "Completion", lines = 1)],
title = "Generative AI - LLM & RAG",
description = os.environ["DESCRIPTION"])
demo.launch()