Update app.py
Browse files
app.py
CHANGED
@@ -40,10 +40,12 @@ def invoke(openai_api_key, use_rag, prompt):
|
|
40 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size = 1500, chunk_overlap = 150)
|
41 |
splits = text_splitter.split_documents(docs)
|
42 |
vector_db = Chroma.from_documents(documents = splits, embedding = OpenAIEmbeddings(), persist_directory = CHROMA_DIR)
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
|
47 |
result = qa_chain({"query": prompt})
|
48 |
#print(result)
|
49 |
return result["result"]
|
|
|
40 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size = 1500, chunk_overlap = 150)
|
41 |
splits = text_splitter.split_documents(docs)
|
42 |
vector_db = Chroma.from_documents(documents = splits, embedding = OpenAIEmbeddings(), persist_directory = CHROMA_DIR)
|
43 |
+
llm = ChatOpenAI(model_name = MODEL_NAME, openai_api_key = openai_api_key, temperature = 0)
|
44 |
+
qa_chain = RetrievalQA.from_chain_type(llm, retriever = vector_db.as_retriever(search_kwargs = {"k": 3}), return_source_documents = True, chain_type_kwargs = {"prompt": QA_CHAIN_PROMPT})
|
45 |
+
else:
|
46 |
+
#vector_db = Chroma(persist_directory = CHROMA_DIR, embedding_function = OpenAIEmbeddings())
|
47 |
+
llm = ChatOpenAI(model_name = MODEL_NAME, openai_api_key = openai_api_key, temperature = 0)
|
48 |
+
qa_chain = RetrievalQA.from_chain_type(llm, chain_type_kwargs = {"prompt": QA_CHAIN_PROMPT})
|
49 |
result = qa_chain({"query": prompt})
|
50 |
#print(result)
|
51 |
return result["result"]
|