Update app.py
Browse files
app.py
CHANGED
@@ -20,6 +20,11 @@ _ = load_dotenv(find_dotenv())
|
|
20 |
|
21 |
#openai.api_key = os.environ["OPENAI_API_KEY"]
|
22 |
|
|
|
|
|
|
|
|
|
|
|
23 |
template = """If you don't know the answer, just say that you don't know, don't try to make up an answer. Keep the answer as concise as possible. Always say
|
24 |
"🧠 Thanks for using the app - Bernd" at the end of the answer. """
|
25 |
|
@@ -64,19 +69,19 @@ def document_loading_splitting():
|
|
64 |
return splits
|
65 |
|
66 |
def document_storage_chroma(splits):
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
|
71 |
def document_storage_mongodb(splits):
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
|
77 |
def document_retrieval_chroma(llm, prompt):
|
78 |
db = Chroma(embedding_function = OpenAIEmbeddings(),
|
79 |
-
|
80 |
return db
|
81 |
|
82 |
def document_retrieval_mongodb(llm, prompt):
|
@@ -109,12 +114,13 @@ def invoke(openai_api_key, rag_option, prompt):
|
|
109 |
llm = ChatOpenAI(model_name = MODEL_NAME,
|
110 |
openai_api_key = openai_api_key,
|
111 |
temperature = 0)
|
112 |
-
#splits = document_loading_splitting()
|
113 |
if (rag_option == "Chroma"):
|
|
|
114 |
#document_storage_chroma(splits)
|
115 |
db = document_retrieval_chroma(llm, prompt)
|
116 |
result = rag_chain(llm, prompt, db)
|
117 |
elif (rag_option == "MongoDB"):
|
|
|
118 |
#document_storage_mongodb(splits)
|
119 |
db = document_retrieval_mongodb(llm, prompt)
|
120 |
result = rag_chain(llm, prompt, db)
|
|
|
20 |
|
21 |
#openai.api_key = os.environ["OPENAI_API_KEY"]
|
22 |
|
23 |
+
mongodb_atlas_cluster_uri = os.environ["MONGODB_ATLAS_CLUSTER_URI"]
|
24 |
+
client = MongoClient(mongodb_atlas_cluster_uri)
|
25 |
+
MONGODB_COLLECTION = client["langchain_db"]["gpt-4"]
|
26 |
+
MONGODB_INDEX_NAME = "default"
|
27 |
+
|
28 |
template = """If you don't know the answer, just say that you don't know, don't try to make up an answer. Keep the answer as concise as possible. Always say
|
29 |
"🧠 Thanks for using the app - Bernd" at the end of the answer. """
|
30 |
|
|
|
69 |
return splits
|
70 |
|
71 |
def document_storage_chroma(splits):
|
72 |
+
Chroma.from_documents(documents = splits,
|
73 |
+
embedding = OpenAIEmbeddings(disallowed_special = ()),
|
74 |
+
persist_directory = CHROMA_DIR)
|
75 |
|
76 |
def document_storage_mongodb(splits):
|
77 |
+
MongoDBAtlasVectorSearch.from_documents(documents = splits,
|
78 |
+
embedding = OpenAIEmbeddings(disallowed_special = ()),
|
79 |
+
collection = MONGODB_COLLECTION,
|
80 |
+
index_name = MONGODB_INDEX_NAME)
|
81 |
|
82 |
def document_retrieval_chroma(llm, prompt):
|
83 |
db = Chroma(embedding_function = OpenAIEmbeddings(),
|
84 |
+
persist_directory = CHROMA_DIR)
|
85 |
return db
|
86 |
|
87 |
def document_retrieval_mongodb(llm, prompt):
|
|
|
114 |
llm = ChatOpenAI(model_name = MODEL_NAME,
|
115 |
openai_api_key = openai_api_key,
|
116 |
temperature = 0)
|
|
|
117 |
if (rag_option == "Chroma"):
|
118 |
+
#splits = document_loading_splitting()
|
119 |
#document_storage_chroma(splits)
|
120 |
db = document_retrieval_chroma(llm, prompt)
|
121 |
result = rag_chain(llm, prompt, db)
|
122 |
elif (rag_option == "MongoDB"):
|
123 |
+
#splits = document_loading_splitting()
|
124 |
#document_storage_mongodb(splits)
|
125 |
db = document_retrieval_mongodb(llm, prompt)
|
126 |
result = rag_chain(llm, prompt, db)
|