bstraehle commited on
Commit
6a95bbc
·
1 Parent(s): f4087b0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -6
app.py CHANGED
@@ -1,5 +1,5 @@
1
  import gradio as gr
2
- import openai, os, random, shutil
3
 
4
  from langchain.chains import RetrievalQA
5
  from langchain.chat_models import ChatOpenAI
@@ -14,7 +14,7 @@ from langchain.vectorstores import Chroma
14
  from dotenv import load_dotenv, find_dotenv
15
  _ = load_dotenv(find_dotenv())
16
 
17
- openai.api_key = "" #os.environ["OPENAI_API_KEY"]
18
 
19
  template = """Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up
20
  an answer. Keep the answer as concise as possible. Always say "🔥 Thanks for using the app - Bernd Straehle." at the end of the answer.
@@ -22,10 +22,8 @@ template = """Use the following pieces of context to answer the question at the
22
 
23
  QA_CHAIN_PROMPT = PromptTemplate(input_variables = ["context", "question"], template = template)
24
 
25
- rng = str(random.randrange(1000000))
26
-
27
- CHROMA_DIR = "docs/chroma" + rng
28
- YOUTUBE_DIR = "docs/youtube" + rng
29
 
30
  MODEL_NAME = "gpt-4"
31
 
@@ -47,6 +45,7 @@ def invoke(openai_api_key, youtube_url, process_video, prompt):
47
  qa_chain = RetrievalQA.from_chain_type(llm, retriever = vector_db.as_retriever(search_kwargs = {"k": 3}), return_source_documents = True, chain_type_kwargs = {"prompt": QA_CHAIN_PROMPT})
48
  result = qa_chain({"query": prompt})
49
  #print(result)
 
50
  return result["result"]
51
 
52
  description = """<strong>Overview:</strong> The app demonstrates how to use a Large Language Model (LLM) with Retrieval Augmented Generation (RAG) on external data
 
1
  import gradio as gr
2
+ import openai, os, shutil
3
 
4
  from langchain.chains import RetrievalQA
5
  from langchain.chat_models import ChatOpenAI
 
14
  from dotenv import load_dotenv, find_dotenv
15
  _ = load_dotenv(find_dotenv())
16
 
17
+ #openai.api_key = os.environ["OPENAI_API_KEY"]
18
 
19
  template = """Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up
20
  an answer. Keep the answer as concise as possible. Always say "🔥 Thanks for using the app - Bernd Straehle." at the end of the answer.
 
22
 
23
  QA_CHAIN_PROMPT = PromptTemplate(input_variables = ["context", "question"], template = template)
24
 
25
+ CHROMA_DIR = "docs/chroma"
26
+ YOUTUBE_DIR = "docs/youtube"
 
 
27
 
28
  MODEL_NAME = "gpt-4"
29
 
 
45
  qa_chain = RetrievalQA.from_chain_type(llm, retriever = vector_db.as_retriever(search_kwargs = {"k": 3}), return_source_documents = True, chain_type_kwargs = {"prompt": QA_CHAIN_PROMPT})
46
  result = qa_chain({"query": prompt})
47
  #print(result)
48
+ openai.api_key = ""
49
  return result["result"]
50
 
51
  description = """<strong>Overview:</strong> The app demonstrates how to use a Large Language Model (LLM) with Retrieval Augmented Generation (RAG) on external data