Update app.py
Browse files
app.py
CHANGED
@@ -1,157 +1,27 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
|
4 |
from dotenv import load_dotenv, find_dotenv
|
5 |
-
from langchain.chains import LLMChain, RetrievalQA
|
6 |
-
from langchain.chat_models import ChatOpenAI
|
7 |
-
from langchain.document_loaders import PyPDFLoader, WebBaseLoader
|
8 |
-
from langchain.document_loaders.blob_loaders.youtube_audio import YoutubeAudioLoader
|
9 |
-
from langchain.document_loaders.generic import GenericLoader
|
10 |
-
from langchain.document_loaders.parsers import OpenAIWhisperParser
|
11 |
-
from langchain.embeddings.openai import OpenAIEmbeddings
|
12 |
-
from langchain.prompts import PromptTemplate
|
13 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
14 |
-
from langchain.vectorstores import Chroma
|
15 |
-
from langchain.vectorstores import MongoDBAtlasVectorSearch
|
16 |
-
from pymongo import MongoClient
|
17 |
-
from wandb.sdk.data_types.trace_tree import Trace
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
PDF_URL = "https://arxiv.org/pdf/2303.08774.pdf"
|
22 |
-
WEB_URL = "https://openai.com/research/gpt-4"
|
23 |
-
YOUTUBE_URL_1 = "https://www.youtube.com/watch?v=--khbXchTeE"
|
24 |
-
YOUTUBE_URL_2 = "https://www.youtube.com/watch?v=hdhZwyf24mE"
|
25 |
-
YOUTUBE_URL_3 = "https://www.youtube.com/watch?v=vw-KWfKwvTQ"
|
26 |
-
|
27 |
-
YOUTUBE_DIR = "/data/youtube"
|
28 |
-
CHROMA_DIR = "/data/chroma"
|
29 |
|
30 |
-
|
31 |
-
MONGODB_DB_NAME = "langchain_db"
|
32 |
-
MONGODB_COLLECTION_NAME = "gpt-4"
|
33 |
-
MONGODB_INDEX_NAME = "default"
|
34 |
|
35 |
-
|
36 |
-
RAG_CHAIN_PROMPT = PromptTemplate(input_variables = ["context", "question"], template = os.environ["RAG_TEMPLATE"])
|
37 |
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
RAG_OFF = "Off"
|
41 |
RAG_CHROMA = "Chroma"
|
42 |
RAG_MONGODB = "MongoDB"
|
43 |
|
44 |
-
client = MongoClient(MONGODB_ATLAS_CLUSTER_URI)
|
45 |
-
collection = client[MONGODB_DB_NAME][MONGODB_COLLECTION_NAME]
|
46 |
-
|
47 |
-
config = {
|
48 |
-
"chunk_overlap": 150,
|
49 |
-
"chunk_size": 1500,
|
50 |
-
"k": 3,
|
51 |
-
"model_name": "gpt-4-0613",
|
52 |
-
"temperature": 0,
|
53 |
-
}
|
54 |
-
|
55 |
-
def document_loading_splitting():
|
56 |
-
# Document loading
|
57 |
-
docs = []
|
58 |
-
|
59 |
-
# Load PDF
|
60 |
-
loader = PyPDFLoader(PDF_URL)
|
61 |
-
docs.extend(loader.load())
|
62 |
-
|
63 |
-
# Load Web
|
64 |
-
loader = WebBaseLoader(WEB_URL)
|
65 |
-
docs.extend(loader.load())
|
66 |
-
|
67 |
-
# Load YouTube
|
68 |
-
loader = GenericLoader(YoutubeAudioLoader([YOUTUBE_URL_1,
|
69 |
-
YOUTUBE_URL_2,
|
70 |
-
YOUTUBE_URL_3], YOUTUBE_DIR),
|
71 |
-
OpenAIWhisperParser())
|
72 |
-
docs.extend(loader.load())
|
73 |
-
|
74 |
-
# Document splitting
|
75 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_overlap = config["chunk_overlap"],
|
76 |
-
chunk_size = config["chunk_size"])
|
77 |
-
split_documents = text_splitter.split_documents(docs)
|
78 |
-
|
79 |
-
return split_documents
|
80 |
-
|
81 |
-
def document_storage_chroma(documents):
|
82 |
-
Chroma.from_documents(documents = documents,
|
83 |
-
embedding = OpenAIEmbeddings(disallowed_special = ()),
|
84 |
-
persist_directory = CHROMA_DIR)
|
85 |
-
|
86 |
-
def document_storage_mongodb(documents):
|
87 |
-
MongoDBAtlasVectorSearch.from_documents(documents = documents,
|
88 |
-
embedding = OpenAIEmbeddings(disallowed_special = ()),
|
89 |
-
collection = collection,
|
90 |
-
index_name = MONGODB_INDEX_NAME)
|
91 |
-
|
92 |
-
def document_retrieval_chroma(llm, prompt):
|
93 |
-
return Chroma(embedding_function = OpenAIEmbeddings(),
|
94 |
-
persist_directory = CHROMA_DIR)
|
95 |
-
|
96 |
-
def document_retrieval_mongodb(llm, prompt):
|
97 |
-
return MongoDBAtlasVectorSearch.from_connection_string(MONGODB_ATLAS_CLUSTER_URI,
|
98 |
-
MONGODB_DB_NAME + "." + MONGODB_COLLECTION_NAME,
|
99 |
-
OpenAIEmbeddings(disallowed_special = ()),
|
100 |
-
index_name = MONGODB_INDEX_NAME)
|
101 |
-
|
102 |
-
def llm_chain(llm, prompt):
|
103 |
-
llm_chain = LLMChain(llm = llm,
|
104 |
-
prompt = LLM_CHAIN_PROMPT,
|
105 |
-
verbose = False)
|
106 |
-
completion = llm_chain.generate([{"question": prompt}])
|
107 |
-
return completion, llm_chain
|
108 |
-
|
109 |
-
def rag_chain(llm, prompt, db):
|
110 |
-
rag_chain = RetrievalQA.from_chain_type(llm,
|
111 |
-
chain_type_kwargs = {"prompt": RAG_CHAIN_PROMPT},
|
112 |
-
retriever = db.as_retriever(search_kwargs = {"k": config["k"]}),
|
113 |
-
return_source_documents = True,
|
114 |
-
verbose = False)
|
115 |
-
completion = rag_chain({"query": prompt})
|
116 |
-
return completion, rag_chain
|
117 |
-
|
118 |
-
def wandb_trace(rag_option, prompt, completion, result, generation_info, llm_output, chain, err_msg, start_time_ms, end_time_ms):
|
119 |
-
wandb.init(project = "openai-llm-rag")
|
120 |
-
|
121 |
-
trace = Trace(
|
122 |
-
kind = "chain",
|
123 |
-
name = "" if (chain == None) else type(chain).__name__,
|
124 |
-
status_code = "success" if (str(err_msg) == "") else "error",
|
125 |
-
status_message = str(err_msg),
|
126 |
-
metadata = {"chunk_overlap": "" if (rag_option == RAG_OFF) else config["chunk_overlap"],
|
127 |
-
"chunk_size": "" if (rag_option == RAG_OFF) else config["chunk_size"],
|
128 |
-
} if (str(err_msg) == "") else {},
|
129 |
-
inputs = {"rag_option": rag_option,
|
130 |
-
"prompt": prompt,
|
131 |
-
"chain_prompt": (str(chain.prompt) if (rag_option == RAG_OFF) else
|
132 |
-
str(chain.combine_documents_chain.llm_chain.prompt)),
|
133 |
-
"source_documents": "" if (rag_option == RAG_OFF) else str([doc.metadata["source"] for doc in completion["source_documents"]]),
|
134 |
-
} if (str(err_msg) == "") else {},
|
135 |
-
outputs = {"result": result,
|
136 |
-
"generation_info": str(generation_info),
|
137 |
-
"llm_output": str(llm_output),
|
138 |
-
"completion": str(completion),
|
139 |
-
} if (str(err_msg) == "") else {},
|
140 |
-
model_dict = {"client": (str(chain.llm.client) if (rag_option == RAG_OFF) else
|
141 |
-
str(chain.combine_documents_chain.llm_chain.llm.client)),
|
142 |
-
"model_name": (str(chain.llm.model_name) if (rag_option == RAG_OFF) else
|
143 |
-
str(chain.combine_documents_chain.llm_chain.llm.model_name)),
|
144 |
-
"temperature": (str(chain.llm.temperature) if (rag_option == RAG_OFF) else
|
145 |
-
str(chain.combine_documents_chain.llm_chain.llm.temperature)),
|
146 |
-
"retriever": ("" if (rag_option == RAG_OFF) else str(chain.retriever)),
|
147 |
-
} if (str(err_msg) == "") else {},
|
148 |
-
start_time_ms = start_time_ms,
|
149 |
-
end_time_ms = end_time_ms
|
150 |
-
)
|
151 |
-
|
152 |
-
trace.log("evaluation")
|
153 |
-
wandb.finish()
|
154 |
-
|
155 |
def invoke(openai_api_key, rag_option, prompt):
|
156 |
if (openai_api_key == ""):
|
157 |
raise gr.Error("OpenAI API Key is required.")
|
@@ -159,6 +29,9 @@ def invoke(openai_api_key, rag_option, prompt):
|
|
159 |
raise gr.Error("Retrieval Augmented Generation is required.")
|
160 |
if (prompt == ""):
|
161 |
raise gr.Error("Prompt is required.")
|
|
|
|
|
|
|
162 |
|
163 |
chain = None
|
164 |
completion = ""
|
@@ -170,42 +43,39 @@ def invoke(openai_api_key, rag_option, prompt):
|
|
170 |
try:
|
171 |
start_time_ms = round(time.time() * 1000)
|
172 |
|
173 |
-
|
174 |
-
|
175 |
-
temperature = config["temperature"])
|
176 |
-
|
177 |
-
if (rag_option == RAG_CHROMA):
|
178 |
-
#splits = document_loading_splitting()
|
179 |
-
#document_storage_chroma(splits)
|
180 |
-
|
181 |
-
db = document_retrieval_chroma(llm, prompt)
|
182 |
-
completion, chain = rag_chain(llm, prompt, db)
|
183 |
-
result = completion["result"]
|
184 |
-
elif (rag_option == RAG_MONGODB):
|
185 |
-
#splits = document_loading_splitting()
|
186 |
-
#document_storage_mongodb(splits)
|
187 |
-
|
188 |
-
db = document_retrieval_mongodb(llm, prompt)
|
189 |
-
completion, chain = rag_chain(llm, prompt, db)
|
190 |
-
result = completion["result"]
|
191 |
-
else:
|
192 |
-
completion, chain = llm_chain(llm, prompt)
|
193 |
|
194 |
if (completion.generations[0] != None and completion.generations[0][0] != None):
|
195 |
result = completion.generations[0][0].text
|
196 |
generation_info = completion.generations[0][0].generation_info
|
197 |
|
198 |
llm_output = completion.llm_output
|
|
|
|
|
|
|
199 |
except Exception as e:
|
200 |
err_msg = e
|
|
|
201 |
raise gr.Error(e)
|
202 |
finally:
|
203 |
end_time_ms = round(time.time() * 1000)
|
204 |
|
205 |
-
wandb_trace(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
return result
|
207 |
|
208 |
gr.close_all()
|
|
|
209 |
demo = gr.Interface(fn=invoke,
|
210 |
inputs = [gr.Textbox(label = "OpenAI API Key", type = "password", lines = 1),
|
211 |
gr.Radio([RAG_OFF, RAG_CHROMA, RAG_MONGODB], label = "Retrieval Augmented Generation", value = RAG_OFF),
|
@@ -214,4 +84,5 @@ demo = gr.Interface(fn=invoke,
|
|
214 |
outputs = [gr.Textbox(label = "Completion", lines = 1)],
|
215 |
title = "Generative AI - LLM & RAG",
|
216 |
description = os.environ["DESCRIPTION"])
|
217 |
-
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import os, time
|
3 |
|
4 |
from dotenv import load_dotenv, find_dotenv
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
+
from rag import llm_chain, rag_chain, rag_batch
|
7 |
+
from trace import wandb_trace
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
_ = load_dotenv(find_dotenv())
|
|
|
|
|
|
|
10 |
|
11 |
+
RAG_BATCH = False # document loading, splitting, storage
|
|
|
12 |
|
13 |
+
config = {
|
14 |
+
"chunk_overlap": 150, # document splitting
|
15 |
+
"chunk_size": 1500, # document splitting
|
16 |
+
"k": 3, # document retrieval
|
17 |
+
"model_name": "gpt-4-0314", # llm
|
18 |
+
"temperature": 0, # llm
|
19 |
+
}
|
20 |
|
21 |
RAG_OFF = "Off"
|
22 |
RAG_CHROMA = "Chroma"
|
23 |
RAG_MONGODB = "MongoDB"
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
def invoke(openai_api_key, rag_option, prompt):
|
26 |
if (openai_api_key == ""):
|
27 |
raise gr.Error("OpenAI API Key is required.")
|
|
|
29 |
raise gr.Error("Retrieval Augmented Generation is required.")
|
30 |
if (prompt == ""):
|
31 |
raise gr.Error("Prompt is required.")
|
32 |
+
|
33 |
+
if (RAG_BATCH):
|
34 |
+
rag_batch(config)
|
35 |
|
36 |
chain = None
|
37 |
completion = ""
|
|
|
43 |
try:
|
44 |
start_time_ms = round(time.time() * 1000)
|
45 |
|
46 |
+
if (rag_option == RAG_OFF):
|
47 |
+
completion, chain = llm_chain(config, openai_api_key, prompt)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
if (completion.generations[0] != None and completion.generations[0][0] != None):
|
50 |
result = completion.generations[0][0].text
|
51 |
generation_info = completion.generations[0][0].generation_info
|
52 |
|
53 |
llm_output = completion.llm_output
|
54 |
+
else:
|
55 |
+
completion, chain = rag_chain(config, openai_api_key, rag_option, prompt)
|
56 |
+
result = completion["result"]
|
57 |
except Exception as e:
|
58 |
err_msg = e
|
59 |
+
|
60 |
raise gr.Error(e)
|
61 |
finally:
|
62 |
end_time_ms = round(time.time() * 1000)
|
63 |
|
64 |
+
wandb_trace(config,
|
65 |
+
rag_option == RAG_OFF,
|
66 |
+
prompt,
|
67 |
+
completion,
|
68 |
+
result,
|
69 |
+
generation_info,
|
70 |
+
llm_output,
|
71 |
+
chain,
|
72 |
+
err_msg,
|
73 |
+
start_time_ms,
|
74 |
+
end_time_ms)
|
75 |
return result
|
76 |
|
77 |
gr.close_all()
|
78 |
+
|
79 |
demo = gr.Interface(fn=invoke,
|
80 |
inputs = [gr.Textbox(label = "OpenAI API Key", type = "password", lines = 1),
|
81 |
gr.Radio([RAG_OFF, RAG_CHROMA, RAG_MONGODB], label = "Retrieval Augmented Generation", value = RAG_OFF),
|
|
|
84 |
outputs = [gr.Textbox(label = "Completion", lines = 1)],
|
85 |
title = "Generative AI - LLM & RAG",
|
86 |
description = os.environ["DESCRIPTION"])
|
87 |
+
|
88 |
+
demo.launch()
|