Update app.py
Browse files
app.py
CHANGED
@@ -51,14 +51,13 @@ description = """<strong>Overview:</strong> The app demonstrates how to use a <s
|
|
51 |
(RAG) on external data (YouTube videos in this case, but it could be PDFs, URLs, databases, or other structured/unstructured and private/public
|
52 |
<a href='https://raw.githubusercontent.com/bstraehle/ai-ml-dl/c38b224c196fc984aab6b6cc6bdc666f8f4fbcff/langchain/document-loaders.png'>data sources</a>).\n\n
|
53 |
<strong>Instructions:</strong> Enter an OpenAI API key, YouTube URL, and prompt to perform semantic search, sentiment analysis, summarization, translation, etc.
|
54 |
-
<ul>
|
55 |
<li>Set "Process Video" to "False" and submit prompt "what is gpt-4". The LLM <strong>without</strong> RAG does not know the answer.</li>
|
56 |
<li>Set "Process Video" to "True" and submit prompt "what is gpt-4". The LLM <strong>with</strong> RAG knows the answer.</li>
|
57 |
<li>Experiment with different prompts, for example "what is gpt-4, answer in german" or "write a haiku about gpt-4".</li>
|
58 |
</ul>
|
59 |
-
In a production system processing external data would be done in a batch process, while prompting is done in a user interaction
|
60 |
-
|
61 |
-
and enable LLM use cases on them.\n\n
|
62 |
<strong>Technology:</strong> <a href='https://www.gradio.app/'>Gradio</a> UI using <a href='https://platform.openai.com/'>OpenAI</a> API
|
63 |
via AI-first <a href='https://www.langchain.com/'>LangChain</a> toolkit with <a href='https://openai.com/research/whisper'>Whisper</a> (speech-to-text)
|
64 |
and <a href='https://openai.com/research/gpt-4'>GPT-4</a> (LLM) foundation models as well as AI-native
|
|
|
51 |
(RAG) on external data (YouTube videos in this case, but it could be PDFs, URLs, databases, or other structured/unstructured and private/public
|
52 |
<a href='https://raw.githubusercontent.com/bstraehle/ai-ml-dl/c38b224c196fc984aab6b6cc6bdc666f8f4fbcff/langchain/document-loaders.png'>data sources</a>).\n\n
|
53 |
<strong>Instructions:</strong> Enter an OpenAI API key, YouTube URL, and prompt to perform semantic search, sentiment analysis, summarization, translation, etc.
|
54 |
+
<ul style="list-style-type:square;">
|
55 |
<li>Set "Process Video" to "False" and submit prompt "what is gpt-4". The LLM <strong>without</strong> RAG does not know the answer.</li>
|
56 |
<li>Set "Process Video" to "True" and submit prompt "what is gpt-4". The LLM <strong>with</strong> RAG knows the answer.</li>
|
57 |
<li>Experiment with different prompts, for example "what is gpt-4, answer in german" or "write a haiku about gpt-4".</li>
|
58 |
</ul>
|
59 |
+
In a production system processing external data would be done in a batch process, while prompting is done in a user interaction. A sample system could load
|
60 |
+
all <a href='https://www.youtube.com/playlist?list=PL2yQDdvlhXf_hIzmfHCdbcXj2hS52oP9r>AWS re:Invent 2022</a> YouTube videos and enable LLM use cases on them.\n\n
|
|
|
61 |
<strong>Technology:</strong> <a href='https://www.gradio.app/'>Gradio</a> UI using <a href='https://platform.openai.com/'>OpenAI</a> API
|
62 |
via AI-first <a href='https://www.langchain.com/'>LangChain</a> toolkit with <a href='https://openai.com/research/whisper'>Whisper</a> (speech-to-text)
|
63 |
and <a href='https://openai.com/research/gpt-4'>GPT-4</a> (LLM) foundation models as well as AI-native
|