bstraehle commited on
Commit
b3af0cf
·
1 Parent(s): c874a48

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -4
app.py CHANGED
@@ -51,14 +51,13 @@ description = """<strong>Overview:</strong> The app demonstrates how to use a <s
51
  (RAG) on external data (YouTube videos in this case, but it could be PDFs, URLs, databases, or other structured/unstructured and private/public
52
  <a href='https://raw.githubusercontent.com/bstraehle/ai-ml-dl/c38b224c196fc984aab6b6cc6bdc666f8f4fbcff/langchain/document-loaders.png'>data sources</a>).\n\n
53
  <strong>Instructions:</strong> Enter an OpenAI API key, YouTube URL, and prompt to perform semantic search, sentiment analysis, summarization, translation, etc.
54
- <ul>
55
  <li>Set "Process Video" to "False" and submit prompt "what is gpt-4". The LLM <strong>without</strong> RAG does not know the answer.</li>
56
  <li>Set "Process Video" to "True" and submit prompt "what is gpt-4". The LLM <strong>with</strong> RAG knows the answer.</li>
57
  <li>Experiment with different prompts, for example "what is gpt-4, answer in german" or "write a haiku about gpt-4".</li>
58
  </ul>
59
- In a production system processing external data would be done in a batch process, while prompting is done in a user interaction.\n\n
60
- A sample system could load all <a href='https://www.youtube.com/playlist?list=PL2yQDdvlhXf_hIzmfHCdbcXj2hS52oP9r>AWS re:Invent 2022</a> YouTube videos
61
- and enable LLM use cases on them.\n\n
62
  <strong>Technology:</strong> <a href='https://www.gradio.app/'>Gradio</a> UI using <a href='https://platform.openai.com/'>OpenAI</a> API
63
  via AI-first <a href='https://www.langchain.com/'>LangChain</a> toolkit with <a href='https://openai.com/research/whisper'>Whisper</a> (speech-to-text)
64
  and <a href='https://openai.com/research/gpt-4'>GPT-4</a> (LLM) foundation models as well as AI-native
 
51
  (RAG) on external data (YouTube videos in this case, but it could be PDFs, URLs, databases, or other structured/unstructured and private/public
52
  <a href='https://raw.githubusercontent.com/bstraehle/ai-ml-dl/c38b224c196fc984aab6b6cc6bdc666f8f4fbcff/langchain/document-loaders.png'>data sources</a>).\n\n
53
  <strong>Instructions:</strong> Enter an OpenAI API key, YouTube URL, and prompt to perform semantic search, sentiment analysis, summarization, translation, etc.
54
+ <ul style="list-style-type:square;">
55
  <li>Set "Process Video" to "False" and submit prompt "what is gpt-4". The LLM <strong>without</strong> RAG does not know the answer.</li>
56
  <li>Set "Process Video" to "True" and submit prompt "what is gpt-4". The LLM <strong>with</strong> RAG knows the answer.</li>
57
  <li>Experiment with different prompts, for example "what is gpt-4, answer in german" or "write a haiku about gpt-4".</li>
58
  </ul>
59
+ In a production system processing external data would be done in a batch process, while prompting is done in a user interaction. A sample system could load
60
+ all <a href='https://www.youtube.com/playlist?list=PL2yQDdvlhXf_hIzmfHCdbcXj2hS52oP9r>AWS re:Invent 2022</a> YouTube videos and enable LLM use cases on them.\n\n
 
61
  <strong>Technology:</strong> <a href='https://www.gradio.app/'>Gradio</a> UI using <a href='https://platform.openai.com/'>OpenAI</a> API
62
  via AI-first <a href='https://www.langchain.com/'>LangChain</a> toolkit with <a href='https://openai.com/research/whisper'>Whisper</a> (speech-to-text)
63
  and <a href='https://openai.com/research/gpt-4'>GPT-4</a> (LLM) foundation models as well as AI-native