import gradio as gr import openai, os from langchain.chains import LLMChain, RetrievalQA from langchain.chat_models import ChatOpenAI from langchain.document_loaders.blob_loaders.youtube_audio import YoutubeAudioLoader from langchain.document_loaders.generic import GenericLoader from langchain.document_loaders.parsers import OpenAIWhisperParser from langchain.embeddings.openai import OpenAIEmbeddings from langchain.prompts import PromptTemplate from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.vectorstores import Chroma from dotenv import load_dotenv, find_dotenv _ = load_dotenv(find_dotenv()) #openai.api_key = os.environ["OPENAI_API_KEY"] template = """If you don't know the answer, just say that you don't know, don't try to make up an answer. Keep the answer as concise as possible. Always say "🔥 Thanks for using the app - Bernd Straehle." at the end of the answer. """ llm_template = "Answer the question at the end. " + template + "Question: {question} Helpful Answer: " rag_template = "Use the following pieces of context to answer the question at the end. " + template + "{context} Question: {question} Helpful Answer: " LLM_CHAIN_PROMPT = PromptTemplate(input_variables = ["question"], template = llm_template) RAG_CHAIN_PROMPT = PromptTemplate(input_variables = ["context", "question"], template = rag_template) CHROMA_DIR = "/data/chroma" YOUTUBE_DIR = "/data/youtube" YOUTUBE_URL_1 = "https://www.youtube.com/watch?v=--khbXchTeE" YOUTUBE_URL_2 = "https://www.youtube.com/watch?v=hdhZwyf24mE" YOUTUBE_URL_3 = "https://www.youtube.com/watch?v=vw-KWfKwvTQ" YOUTUBE_URL_4 = "https://www.youtube.com/watch?v=kiHpqXNCPj8" YOUTUBE_URL_5 = "https://www.youtube.com/shorts/3x95mw35dJY" YOUTUBE_URL_6 = "https://www.youtube.com/shorts/zg-DS23wq0c" YOUTUBE_URL_7 = "https://www.youtube.com/shorts/cS4fyhKZ8bQ" MODEL_NAME = "gpt-4" def invoke(openai_api_key, use_rag, prompt): llm = ChatOpenAI(model_name = MODEL_NAME, openai_api_key = openai_api_key, temperature = 0) if (use_rag): # Document loading, splitting, and storage #loader = GenericLoader(YoutubeAudioLoader([YOUTUBE_URL_1, # YOUTUBE_URL_2, # YOUTUBE_URL_3, # YOUTUBE_URL_4, # YOUTUBE_URL_5, # YOUTUBE_URL_6, # YOUTUBE_URL_7], YOUTUBE_DIR), # OpenAIWhisperParser()) #docs = loader.load() #text_splitter = RecursiveCharacterTextSplitter(chunk_overlap = 150, # chunk_size = 1500) #splits = text_splitter.split_documents(docs) #vector_db = Chroma.from_documents(documents = splits, # embedding = OpenAIEmbeddings(), # persist_directory = CHROMA_DIR) # Document retrieval vector_db = Chroma(embedding_function = OpenAIEmbeddings(), persist_directory = CHROMA_DIR) rag_chain = RetrievalQA.from_chain_type(llm, chain_type_kwargs = {"prompt": RAG_CHAIN_PROMPT}, retriever = vector_db.as_retriever(search_kwargs = {"k": 3}), return_source_documents = True) result = rag_chain({"query": prompt}) result = result["result"] else: chain = LLMChain(llm = llm, prompt = LLM_CHAIN_PROMPT) result = chain.run({"question": prompt}) return result description = """Overview: The app demonstrates how to use a Large Language Model (LLM) with Retrieval Augmented Generation (RAG) on external data (YouTube videos, PDFs, URLs, or other data sources).\n\n Instructions: Enter an OpenAI API key and perform LLM use cases (semantic search, summarization, translation, etc.) on YouTube videos about GPT-4, created after its training cutoff.