import gradio as gr import shutil, openai, os from langchain.chains import RetrievalQA from langchain.chat_models import ChatOpenAI from langchain.document_loaders.blob_loaders.youtube_audio import YoutubeAudioLoader from langchain.document_loaders.generic import GenericLoader from langchain.document_loaders.parsers import OpenAIWhisperParser from langchain.embeddings.openai import OpenAIEmbeddings from langchain.prompts import PromptTemplate from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.vectorstores import Chroma from dotenv import load_dotenv, find_dotenv _ = load_dotenv(find_dotenv()) #openai.api_key = os.environ["OPENAI_API_KEY"] template = """Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer. Keep the answer as concise as possible. Always say "🔥 Thanks for using the app, Bernd Straehle." at the end of the answer. {context} Question: {question} Helpful Answer: """ QA_CHAIN_PROMPT = PromptTemplate(input_variables = ["context", "question"], template = template) print(0) qa_chain = None def invoke(openai_api_key, youtube_url, prompt): openai.api_key = openai_api_key if (os.path.isdir("docs/chroma/") == False): print(1) youtube_dir = "docs/youtube/" loader = GenericLoader(YoutubeAudioLoader([youtube_url], youtube_dir), OpenAIWhisperParser()) docs = loader.load() text_splitter = RecursiveCharacterTextSplitter(chunk_size = 1500, chunk_overlap = 150) splits = text_splitter.split_documents(docs) chroma_dir = "docs/chroma/" vectordb = Chroma.from_documents(documents = splits, embedding = OpenAIEmbeddings(), persist_directory = chroma_dir) llm = ChatOpenAI(model_name = "gpt-4", temperature = 0) global qa_chain = RetrievalQA.from_chain_type(llm, retriever = vectordb.as_retriever(), return_source_documents = True, chain_type_kwargs = {"prompt": QA_CHAIN_PROMPT}) print(2) result = global qa_chain({"query": prompt}) shutil.rmtree(youtube_dir) #shutil.rmtree(chroma_dir) return result["result"] description = """The app demonstrates how to use a Large Language Model (LLM) with Retrieval Augmented Generation (RAG) on external data. Enter an OpenAI API key, YouTube URL (external data), and prompt to perform semantic search, sentiment analysis, summarization, translation, etc.\n\n Implementation: Gradio UI using OpenAI API via AI-first LangChain toolkit with Whisper (speech to text) and GPT-4 (LLM use cases) foundation models as well as AI-native Chroma embedding database.""" gr.close_all() demo = gr.Interface(fn=invoke, inputs = [gr.Textbox(label = "OpenAI API Key", value = "sk-", lines = 1), gr.Textbox(label = "YouTube URL", value = "https://www.youtube.com/watch?v=--khbXchTeE", lines = 1), gr.Textbox(label = "Prompt", value = "GPT-4 human level performance", lines = 1)], outputs = [gr.Textbox(label = "Completion", lines = 1)], title = "Generative AI - LLM & RAG", description = description) demo.launch()