File size: 7,076 Bytes
2aacaa3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
123b0e8
2aacaa3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a76dc6
2aacaa3
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
# Import necessary libraries
import gradio as gr
import numpy as np
import pandas as pd
from rapidfuzz.distance import Levenshtein, JaroWinkler
from sentence_transformers import SentenceTransformer, util
from typing import List
import zipfile
import os
import io

def calculate_similarity(code1, code2, Ws, Wl, Wj, model_name):
    model = SentenceTransformer(model_name)
    embedding1 = model.encode(code1)
    embedding2 = model.encode(code2)
    sim_similarity = util.cos_sim(embedding1, embedding2).item()
    lev_ratio = Levenshtein.normalized_similarity(code1, code2)
    jaro_winkler_ratio = JaroWinkler.normalized_similarity(code1, code2)
    overall_similarity = Ws * sim_similarity + Wl * lev_ratio + Wj * jaro_winkler_ratio

    return "The similarity score between the two codes is: %.2f" % overall_similarity

# Define the function to process the uploaded file and return a DataFrame
def extract_and_read_compressed_file(file_path):
    file_names = []
    codes = []

    # Handle .zip files
    if file_path.endswith('.zip'):
        with zipfile.ZipFile(file_path, 'r') as z:
            file_names = z.namelist()
            codes = [z.read(file).decode('utf-8', errors='ignore') for file in file_names]

    else:
        raise ValueError("Unsupported file type. Only .zip is supported.")

    return file_names, codes

def filter_and_return_top(df, similarity_threshold,returned_results):
    filtered_df = df[df['similarity_score'] > similarity_threshold]
    return filtered_df.head(returned_results)

# Perform paraphrase mining with the specified weights
def perform_paraphrase_mining(model, codes_list, weight_semantic, weight_levenshtein, weight_jaro_winkler):
    return paraphrase_mining_with_combined_score(
        model,
        codes_list,
        weight_semantic=weight_semantic,
        weight_levenshtein=weight_levenshtein,
        weight_jaro_winkler=weight_jaro_winkler
    )

def paraphrase_mining_with_combined_score(
    model,
    sentences: List[str],
    show_progress_bar: bool = False,
    weight_semantic: float = 1.0,
    weight_levenshtein: float = 0.0,
    weight_jaro_winkler: float = 0.0
):
    embeddings = model.encode(
        sentences, show_progress_bar=show_progress_bar, convert_to_tensor=True)
    paraphrases = util.paraphrase_mining_embeddings(embeddings, score_function=util.cos_sim)

    results = []
    for score, i, j in paraphrases:
        lev_ratio = Levenshtein.normalized_similarity(sentences[i], sentences[j])
        jaro_winkler_ratio = JaroWinkler.normalized_similarity(sentences[i], sentences[j])

        combined_score = (weight_semantic * score) + \
                         (weight_levenshtein * lev_ratio) + \
                         (weight_jaro_winkler * jaro_winkler_ratio)

        results.append([combined_score, i, j])

    results = sorted(results, key=lambda x: x[0], reverse=True)
    return results

def get_sim_list(zipped_file,Ws, Wl, Wj, model_name,threshold,number_results):
    file_names, codes = extract_and_read_compressed_file(zipped_file)
    model = SentenceTransformer(model_name)
    code_pairs = perform_paraphrase_mining(model, codes,Ws, Wl, Wj)
    pairs_results = []

    for score, i, j in code_pairs:
      pairs_results.append({
        'file_name_1': file_names[i],
        'file_name_2': file_names[j],
        'similarity_score': score
    })

    similarity_df = pd.concat([pd.DataFrame(pairs_results)], ignore_index=True)
    similarity_df = similarity_df.sort_values(by='similarity_score', ascending=False)
    result = filter_and_return_top(similarity_df,threshold,number_results).round(2)

    return result

# Define the Gradio app
with gr.Blocks(theme=gr.themes.Glass()) as demo:
    # Tab for similarity calculation
    with gr.Tab("Code Pair Similarity"):
        # Input components
        code1 = gr.Textbox(label="Code 1")
        code2 = gr.Textbox(label="Code 2")

        # Accordion for weights and models
        with gr.Accordion("Weights and Models", open=False):
            Ws = gr.Slider(0, 1, value=0.7, label="Semantic Search Weight", step=0.1)
            Wl = gr.Slider(0, 1, value=0.3, label="Levenshiern Distance Weight", step=0.1)
            Wj = gr.Slider(0, 1, value=0.0, label="Jaro Winkler Weight", step=0.1)
            model_dropdown = gr.Dropdown(
            [("codebert", "microsoft/codebert-base"),
             ("graphcodebert", "microsoft/graphcodebert-base"),
             ("UnixCoder", "microsoft/unixcoder-base-unimodal"),
             ("CodeBERTa", "huggingface/CodeBERTa-small-v1"),
             ("CodeT5 small", "Salesforce/codet5-small"),
             ("PLBART", "uclanlp/plbart-java-cs"),],
            label="Select Model",
            value= "uclanlp/plbart-java-cs"
            )

        # Output component
        output = gr.Textbox(label="Similarity Score")

        def update_weights(Ws, Wl, Wj):
            total = Ws + Wl + Wj
            if total != 1:
                Wj = 1 - (Ws + Wl)
            return Ws, Wl, Wj

        # Update weights when any slider changes
        Ws.change(update_weights, [Ws, Wl, Wj], [Ws, Wl, Wj])
        Wl.change(update_weights, [Ws, Wl, Wj], [Ws, Wl, Wj])
        Wj.change(update_weights, [Ws, Wl, Wj], [Ws, Wl, Wj])

        # Button to trigger the similarity calculation
        calculate_btn = gr.Button("Calculate Similarity")
        calculate_btn.click(calculate_similarity, inputs=[code1, code2, Ws, Wl, Wj, model_dropdown], outputs=output)

    # Tab for file upload and DataFrame output
    with gr.Tab("Code Collection Pair Similarity"):
        # File uploader component
        file_uploader = gr.File(label="Upload a Zip file",file_types=[".zip"])

        with gr.Accordion("Weights and Models", open=False):
            Ws = gr.Slider(0, 1, value=0.7, label="Semantic Search Weight", step=0.1)
            Wl = gr.Slider(0, 1, value=0.3, label="Levenshiern Distance Weight", step=0.1)
            Wj = gr.Slider(0, 1, value=0.0, label="Jaro Winkler Weight", step=0.1)
            model_dropdown = gr.Dropdown(
            [("codebert", "microsoft/codebert-base"),
             ("graphcodebert", "microsoft/graphcodebert-base"),
             ("UnixCoder", "microsoft/unixcoder-base-unimodal"),
             ("CodeBERTa", "huggingface/CodeBERTa-small-v1"),
             ("CodeT5 small", "Salesforce/codet5-small"),
             ("PLBART", "uclanlp/plbart-java-cs"),],
            label="Select Model",
            value= "uclanlp/plbart-java-cs"
            )
            threshold = gr.Slider(0, 1, value=0, label="Threshold", step=0.01)
            number_results = gr.Slider(1, 1000, value=10, label="Number of Returned pairs", step=1)

        # Output component for the DataFrame
        df_output = gr.Dataframe(label="Results")

        # Button to trigger the file processing
        process_btn = gr.Button("Process File")
        process_btn.click(get_sim_list, inputs=[file_uploader, Ws, Wl, Wj, model_dropdown,threshold,number_results], outputs=df_output)

# Launch the Gradio app with live=True
demo.launch(show_error=True,debug=True)