File size: 11,312 Bytes
6c164b4
 
 
 
 
 
 
 
 
 
 
 
 
 
8005427
6c164b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8005427
 
 
 
 
6c164b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8005427
6c164b4
 
 
8005427
 
6c164b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8005427
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import whisper
from pytube import YouTube
import requests
import time
import streamlit as st
from streamlit_lottie import st_lottie
import numpy as np
import os
from typing import Iterator
from io import StringIO
from utils import write_vtt, write_srt
import ffmpeg
from languages import LANGUAGES

st.set_page_config(page_title="تولید کننده ویدیو زیرنویس خودکار", page_icon=":movie_camera:", layout="wide")

# Define a function that we can use to load lottie files from a link.
@st.cache()
def load_lottieurl(url: str):
    r = requests.get(url)
    if r.status_code != 200:
        return None
    return r.json()

col1, col2 = st.columns([1, 3])
with col1:
    lottie = load_lottieurl("https://assets8.lottiefiles.com/packages/lf20_jh9gfdye.json")
    st_lottie(lottie)

with col2:
    st.write("""
    ## تولید کننده ویدئو زیرنویس خودکار
    ##### یک لینک ویدیوی YouTube وارد کنید و یک ویدیو با زیرنویس دریافت کنید.
    ###### ➠ اگر می‌خواهید ویدیو را به زبان اصلی آن رونویسی کنید، کار را به عنوان «Transcribe» انتخاب کنید.
    ###### ➠ اگر می خواهید زیرنویس ها را به انگلیسی ترجمه کنید، کار را به عنوان "Translate" انتخاب کنید.
    ###### توصیه می کنم از مدل پایه شروع کنید و سپس با مدل های بزرگتر آزمایش کنید، مدل های کوچک و متوسط اغلب به خوبی کار می کنند. """)
    

@st.cache(allow_output_mutation=True)
def populate_metadata(link):
    yt = YouTube(link)
    author = yt.author
    title = yt.title
    description = yt.description
    thumbnail = yt.thumbnail_url
    length = yt.length
    views = yt.views
    return author, title, description, thumbnail, length, views


@st.cache(allow_output_mutation=True)
def download_video(link):
    yt = YouTube(link)
    video = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first().download()
    return video


def convert(seconds):
    return time.strftime("%H:%M:%S", time.gmtime(seconds))


loaded_model = whisper.load_model("base")
current_size = "None"


@st.cache(allow_output_mutation=True)
def change_model(current_size, size):
    if current_size != size:
        loaded_model = whisper.load_model(size)
        return loaded_model
    else:
        raise Exception("Model size is the same as the current size.")


@st.cache(allow_output_mutation=True)
def inference(link, loaded_model, task):
    yt = YouTube(link)
    path = yt.streams.filter(only_audio=True)[0].download(filename="audio.mp3")
    if task == "Transcribe":
        options = dict(task="transcribe", best_of=5)
        results = loaded_model.transcribe(path, **options)
        vtt = getSubs(results["segments"], "vtt", 80)
        srt = getSubs(results["segments"], "srt", 80)
        lang = results["language"]
        return results["text"], vtt, srt, lang
    elif task == "Translate":
        options = dict(task="translate", best_of=5)
        results = loaded_model.transcribe(path, **options)
        vtt = getSubs(results["segments"], "vtt", 80)
        srt = getSubs(results["segments"], "srt", 80)
        lang = results["language"]
        return results["text"], vtt, srt, lang
    else:
        raise ValueError("Task not supported")


@st.cache(allow_output_mutation=True)
def getSubs(segments: Iterator[dict], format: str, maxLineWidth: int) -> str:
    segmentStream = StringIO()

    if format == 'vtt':
        write_vtt(segments, file=segmentStream, maxLineWidth=maxLineWidth)
    elif format == 'srt':
        write_srt(segments, file=segmentStream, maxLineWidth=maxLineWidth)
    else:
        raise Exception("Unknown format " + format)

    segmentStream.seek(0)
    return segmentStream.read()


def get_language_code(language):
    if language in LANGUAGES.keys():
        detected_language = LANGUAGES[language]
        return detected_language
    else:
        raise ValueError("Language not supported")


def generate_subtitled_video(video, audio, transcript):
    video_file = ffmpeg.input(video)
    audio_file = ffmpeg.input(audio)
    ffmpeg.concat(video_file.filter("subtitles", transcript), audio_file, v=1, a=1).output("final.mp4").run(quiet=True, overwrite_output=True)
    video_with_subs = open("final.mp4", "rb")
    return video_with_subs        
    

def main():
    size = st.selectbox("اندازه مدل را انتخاب کنید (هرچه مدل بزرگتر باشد، رونویسی دقیق تر خواهد بود، اما زمان بیشتری طول می کشد)", ["tiny", "base", "small", "medium", "large"], index=1)
    loaded_model = change_model(current_size, size)
    st.write(f"Model is {'multilingual' if loaded_model.is_multilingual else 'English-only'} "
        f"and has {sum(np.prod(p.shape) for p in loaded_model.parameters()):,} parameters.")
    link = st.text_input("پیوند یوتیوب (هرچه ویدیو طولانی تر باشد، زمان پردازش بیشتر است)")
    task = st.selectbox("وظیفه را انتخاب کنید", ["Transcribe", "Translate"], index=0)
    if task == "Transcribe":
        if st.button("Transcribe"):
            author, title, description, thumbnail, length, views = populate_metadata(link)
            results = inference(link, loaded_model, task)
            video = download_video(link)
            lang = results[3]
            detected_language = get_language_code(lang)
                
            col3, col4 = st.columns(2)
            col5, col6, col7, col8 = st.columns(4)
            col9, col10 = st.columns(2)
            with col3:
                st.video(video)
                
            # Write the results to a .txt file and download it.
            with open("transcript.txt", "w+", encoding='utf8') as f:
                f.writelines(results[0])
                f.close()
            with open(os.path.join(os.getcwd(), "transcript.txt"), "rb") as f:
                datatxt = f.read()
                
            with open("transcript.vtt", "w+",encoding='utf8') as f:
                f.writelines(results[1])
                f.close()
            with open(os.path.join(os.getcwd(), "transcript.vtt"), "rb") as f:
                datavtt = f.read()
                
            with open("transcript.srt", "w+",encoding='utf8') as f:
                f.writelines(results[2])
                f.close()
            with open(os.path.join(os.getcwd(), "transcript.srt"), "rb") as f:
                datasrt = f.read()

            with col5:
                st.download_button(label="Download Transcript (.txt)",
                                data=datatxt,
                                file_name="transcript.txt")
            with col6:   
                st.download_button(label="Download Transcript (.vtt)",
                                    data=datavtt,
                                    file_name="transcript.vtt")
            with col7:
                st.download_button(label="Download Transcript (.srt)",
                                    data=datasrt,
                                    file_name="transcript.srt")
            with col9:
                st.success("You can download the transcript in .srt format, edit it (if you need to) and upload it to YouTube to create subtitles for your video.")
            with col10:
                st.info("Streamlit refreshes after the download button is clicked. The data is cached so you can download the transcript again without having to transcribe the video again.")
            
            with col4:
                with st.spinner("Generating Subtitled Video"):
                    video_with_subs = generate_subtitled_video(video, "audio.mp3", "transcript.srt")
                st.video(video_with_subs)
                st.balloons()
            with col8:
                st.download_button(label="Download Subtitled Video",
                                    data=video_with_subs,
                                    file_name=f"{title} with subtitles.mp4")
    elif task == "Translate":
        if st.button("Translate to English"):
            author, title, description, thumbnail, length, views = populate_metadata(link)
            results = inference(link, loaded_model, task)
            video = download_video(link)
            lang = results[3]
            detected_language = get_language_code(lang)
                
            col3, col4 = st.columns(2)
            col5, col6, col7, col8 = st.columns(4)
            col9, col10 = st.columns(2)
            with col3:
                st.video(video)
                
            # Write the results to a .txt file and download it.
            with open("transcript.txt", "w+", encoding='utf8') as f:
                f.writelines(results[0])
                f.close()
            with open(os.path.join(os.getcwd(), "transcript.txt"), "rb") as f:
                datatxt = f.read()
                
            with open("transcript.vtt", "w+",encoding='utf8') as f:
                f.writelines(results[1])
                f.close()
            with open(os.path.join(os.getcwd(), "transcript.vtt"), "rb") as f:
                datavtt = f.read()
                
            with open("transcript.srt", "w+",encoding='utf8') as f:
                f.writelines(results[2])
                f.close()
            with open(os.path.join(os.getcwd(), "transcript.srt"), "rb") as f:
                datasrt = f.read()
            with col5:
                st.download_button(label="Download Transcript (.txt)",
                                data=datatxt,
                                file_name="transcript.txt")
            with col6:   
                st.download_button(label="Download Transcript (.vtt)",
                                    data=datavtt,
                                    file_name="transcript.vtt")
            with col7:
                st.download_button(label="Download Transcript (.srt)",
                                    data=datasrt,
                                    file_name="transcript.srt")
            with col9:
                st.success("You can download the transcript in .srt format, edit it (if you need to) and upload it to YouTube to create subtitles for your video.")
            with col10:
                st.info("Streamlit refreshes after the download button is clicked. The data is cached so you can download the transcript again without having to transcribe the video again.")
            
            with col4:
                with st.spinner("Generating Subtitled Video"):
                    video_with_subs = generate_subtitled_video(video, "audio.mp3", "transcript.srt")
                st.video(video_with_subs)
                st.balloons()
            with col8:
                st.download_button(label="Download Subtitled Video",
                                    data=video_with_subs,
                                    file_name=f"{title} with subtitles.mp4")
    else:
        st.error("Please select a task.")


if __name__ == "__main__":
    main()
    st.markdown("###### Made with :heart: by [@bugbounted](https://github.com/bugbounted)")