Spaces:
Configuration error
Configuration error
File size: 10,397 Bytes
025632f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
import pandas as pd
import streamlit as st
import pybase64 as base64
import io
from logs_portal import log
import os
from datetime import date
from modules import tables
import boto3
from Data.credentials import credentials_s3 as creds3
from streamlit_echarts import st_echarts
from st_aggrid import GridOptionsBuilder, AgGrid, GridUpdateMode, DataReturnMode, JsCode
import numpy as np
from streamlit_lottie import st_lottie
import json
def generador_variable_pond(name, col_s1):
col_s1.markdown("""<p style="margin-top:35px;
font-size:20px;
text-align:center;
margin-bottom:30px;
">{Var}</p>""".format(Var=name),
unsafe_allow_html=True)
def button_style():
style_button = """
<style>
button {
display: inline-block;
background-color: white;
border-radius: 15px;
border: 4px #cccccc;
color: #4a4a4a;
text-align: center;
font-size: 18px;
padding: 2px;
width: 200px;
transition: all 0.5s;
cursor: pointer;
margin-top: 25px;
}
button span {
cursor: pointer;
display: inline-block;
position: relative;
transition: 0.5s;
}
button span:after {
content: '\00bb';
position: absolute;
opacity: 0;
top: 0;
right: -20px;
transition: 0.5s;
}
button:hover {
background-color: #bb1114;
color:#e8e8e8;
}
button:hover span {
padding-right: 25px;
}
button:hover span:after {
opacity: 1;
right: 0;
}
</style>
"""
st.markdown(style_button, unsafe_allow_html=True)
def get_table_excel_link(df, name):
towrite = io.BytesIO()
writer = pd.ExcelWriter(towrite, engine='xlsxwriter')
downloaded_file = df.to_excel(writer, encoding='utf-8', index=False,
header=True)
workbook = writer.book
worksheet = writer.sheets["Sheet1"]
#set the column width as per your requirement
worksheet.set_column('A:BZ', 18)
writer.save()
towrite.seek(0) # reset pointer
file_name = 'Scoring.xlsx'
style = 'style="color:black;text-decoration: none; font-size:18px;" '
name_mark = name
b64 = base64.b64encode(towrite.read()).decode() # some strings
linko = f'<center><a href="data:application/vnd.openxmlformats-officedocument.spreadsheetml.sheet;base64,{b64}" '+style+'download="'+file_name+'"><button>'+name_mark+'</button></a></center>'
return linko
def read_excel_s3(key, secret_key, bucket, path):
s3_client = boto3.client('s3', aws_access_key_id = key, aws_secret_access_key= secret_key)
response = s3_client.get_object(Bucket=bucket, Key=path)
data = response["Body"].read()
df = pd.read_excel(io.BytesIO(data), engine='openpyxl')
return df
def display_table(df: pd.DataFrame, name):
# Configure AgGrid options
gb = GridOptionsBuilder.from_dataframe(df)
gb.configure_selection(selection_mode="multiple", use_checkbox=True,)
gb.configure_column(name, headerCheckboxSelection = True)
gb.configure_columns(("TICKER", "COUNTRY", "LV1"), pinned=True)
return AgGrid(
df, gridOptions=gb.build(),
update_mode=GridUpdateMode.SELECTION_CHANGED,
enable_enterprise_modules=True)
@st.experimental_memo
def read_scoring():
key = creds3["S3_KEY_ID"]
secret_key = creds3["S3_SECRET_KEY"]
bucket = creds3["S3_BUCKET"]
path ="scoring.xlsx"
scoring = read_excel_s3(key, secret_key, bucket, path)
return scoring
# @log
def general():
with open("Data/lotties/99268-laading-22.json", "r") as f:
spinner = json.load(f)
cols1, cols2= st.sidebar.columns((3,1))
place = cols2.empty()
with place:
st_lottie(spinner)
# scoring.index = scoring['Ticker']
button_style()
scoring_completo = read_scoring()
col1, col2, col3 = st.columns((4,1,1))
col1.write("Last Update: " + scoring_completo.iloc[0]["TODAY"])
col1.write("Valores en MM USD")
place1=col2.empty()
place2 =col3.empty()
scoring_completo = scoring_completo.drop(columns=["TODAY"])
scoring_completo[["Nota", 'W Latino', "W Small", 'Nota ESG']] = scoring_completo[["Nota", "W Latino", 'W Small', 'Nota ESG']].fillna(0)
scoring = scoring_completo.copy()
# convert just columns "a" and "b"
metrics = ['MOMENTUM Precio', 'MOMENTUM Fundamental',
'VALUE','PROF', 'Distres_Prom', 'PROF', 'Delta 1M', 'QUALITY', 'Nota ESG']
metrics2 = ['Market_Cap'] + metrics
scoring[metrics2] = scoring[metrics2].round()
scoring[["W Latino", "W Small", "BM Latino", "BM Small"]] = scoring[["W Latino", "W Small", "BM Latino", "BM Small"]] * 100
scoring[["W Latino", "W Small", "BM Latino", "BM Small"]] = scoring[["W Latino", "W Small", "BM Latino", "BM Small"]].round(2).fillna(0)
metrics_aggrid = ['Ticker', 'Portfolio_Country', 'LV1', 'Market_Cap',
'ADTV','Large/Small', 'Delta 1M','Distres_Prom', 'MOMENTUM Precio', 'MOMENTUM Fundamental',
'VALUE','PROF', 'QUALITY', 'Score', "Nota",
'Nota ESG', 'Stop Loss', "W Latino", "W Small", "BM Latino","BM Small"]
scoring = scoring[metrics_aggrid]
scoring[metrics_aggrid] = scoring[metrics_aggrid].replace(np.nan, -1)
metrics3 = ['TICKER', 'COUNTRY', 'LV1', 'MKT CAP', 'ADTV', 'L/S', 'Δ 1M',
'DISTRES', 'MOM PREC',
'MOM FUND', 'VALUE','PROF', 'QUALITY', 'SCORE',
"NOTA", 'ESG', 'STOP LOSS', "W LAT", "W SMALL", "BM LAT", "BM SMALL"]
metrics4 = [
'MOM PREC', 'MOM FUND', 'VALUE', 'QUALITY','DISTRES', 'PROF']
scoring.columns = metrics3
button = st.button("Refresh")
r = display_table(scoring, 'TICKER')
rad = 'Home'
if button:
st.experimental_memo.clear()
st.experimental_rerun()
with place1:
link = get_table_excel_link(scoring_completo, "Scoring completo")
st.markdown(link, unsafe_allow_html=True)
with place2:
link2 = get_table_excel_link(scoring, "Scoring resumen")
st.markdown(link2, unsafe_allow_html=True)
w_lat = []
w_small = []
bm_lat = []
bm_small = []
col1, col2, col3, col4, col5 = st.columns((1,1,1,1,3))
large = col1.checkbox("LUXMEXEQ", True)
small = col2.checkbox("LUXLATSML", True)
m1la = col3.checkbox("M1LA")
msm = col4.checkbox("MSLUELAN")
if "large" not in st.session_state:
st.session_state.large=False
if "small" not in st.session_state:
st.session_state.small=False
if "bm_sm" not in st.session_state:
st.session_state.bm_sm=False
if "bm_lat" not in st.session_state:
st.session_state.bm_lat=False
if large:
st.session_state.large = True
else:
st.session_state.large = False
if small:
st.session_state.small =True
else:
st.session_state.small = False
if m1la:
st.session_state.bm_lat = True
else:
st.session_state.bm_lat = False
if msm:
st.session_state.bm_sm =True
else:
st.session_state.bm_sm = False
col1, col2, col3 = st.columns((2.5, 1, 1))
try:
series_data = []
names=[]
for metric in metrics4:
w_lat.append((scoring[metric]*scoring["W LAT"]/100).sum())
w_small.append((scoring[metric]*scoring["W SMALL"]/100).sum())
bm_lat.append((scoring[metric]*scoring["BM LAT"]/100).sum())
bm_small.append((scoring[metric]*scoring["BM SMALL"]/100).sum())
if st.session_state.large:
series_data.append({"value":w_lat,
"name": "LUXMEXEQ"})
names.append("LUXMEXEQ")
if st.session_state.small:
series_data.append({"value":w_small,
"name": "LUXLATSML"})
names.append("LUXLATSML")
if st.session_state.bm_lat:
series_data.append({"value":bm_lat,
"name": "M1LA"})
names.append("M1LA")
if st.session_state.bm_sm:
series_data.append({"value":bm_small,
"name": "MSLUELAN"})
names.append("MSLUELAN")
if len(r['selected_rows'])>0:
for emp in r['selected_rows']:
selected = emp.copy()
name = selected['TICKER']
names.append(name)
indicators = []
series_value = []
for met in metrics4:
indicators.append({'name': met, "max": 100})
series_value.append(selected[met])
series_data.append({"value": series_value,
"name": name})
with col2:
st.metric('SCORE PROMEDIO - ' + name,
int(np.array(series_value).mean()))
else:
indicators = []
for met in metrics4:
indicators.append({'name': met, "max": 100})
option = {
"title": {"text": 'Score'},
"legend": {"data": names},
"radar": {
"indicator": indicators
},
"series": [
{
"name": "",
"type": "radar",
"data": series_data,
}
],
}
with col1:
st_echarts(option, height="400px", width="80%")
except Exception as exc:
st.write(exc)
pass
# st.image("img/Scoring.png", width="100%")
place.empty()
def diagrama():
import pandas as pd
import pandas_profiling
import streamlit as st
from streamlit_pandas_profiling import st_profile_report
st.image("img/Scoring.png")
df = read_scoring()
df=df[['MOMENTUM Precio','MOMENTUM Fundamental', 'VALUE','QUALITY', 'PROF','Distres_Prom','Score' ]]
pr = df.profile_report()
st_profile_report(pr) |