PortalLVAM / apps /Clustering.py
bullm's picture
ldsakjl
025632f
raw
history blame
8.73 kB
from io import BytesIO
import streamlit as st
import pandas as pd
from scipy.cluster.hierarchy import linkage
from datetime import date
from dateutil.relativedelta import relativedelta
import plotly.figure_factory as ff
from fastdtw import fastdtw
from scipy.spatial.distance import euclidean
import numpy as np
from modules import tables
@st.cache(suppress_st_warning=True)
def data_request(country_to_request, start, currency='USD', end=date.today()):
data = tables.EquityMaster(country=country_to_request, field='IQ_CLOSEPRICE_ADJ', currency=currency).query(rename=['asset'],
start=start, end=str(end))
adtv = tables.EquityMaster(country=country_to_request, field='IQ_VALUE_TRADED', currency=currency).query(rename=['asset'],
start=start, end=str(end)).median()
marketcap = tables.EquityMaster(country=country_to_request, field='IQ_MARKETCAP', currency=currency).query(rename=['asset'],
start=start, end=str(end)).median()
return data, adtv, marketcap
@st.cache(suppress_st_warning=True)
def data_filter(data, adtv, marketcap, adtv_threshold, mktcap_threshold, p):
adtv_filter = (adtv >= adtv_threshold)
adtv = adtv.loc[adtv_filter]
marketcap_filter = (marketcap >= mktcap_threshold)
marketcap = marketcap.loc[marketcap_filter]
data = data.loc[:, data.columns.isin(adtv.index)]
data = data.loc[:, data.columns.isin(marketcap.index)]
file_to_read = 'Data/Company_Base_Definitivo.xlsx'
company_base = pd.read_excel(file_to_read, sheet_name='Compilado')
id_to_ticker = {str(row['ID_Quant']): str(row['Ticker Bloomberg']).split()[0] for i, row in company_base.iterrows()}
data = data.loc[:, data.columns.isin(id_to_ticker.keys())]
data.columns = [id_to_ticker[col] for col in data.columns]
if isinstance(p, str):
returns_final = data.resample(p).last().pct_change().fillna(0)
else:
returns_final = data.iloc[::p].pct_change().fillna(0)
return returns_final
def dist(correlation):
return ((1-correlation)/2.)**.5
def to_excel(df_to_write):
output = BytesIO()
writer = pd.ExcelWriter(output, engine='xlsxwriter')
df_to_write.to_excel(writer, index=False, sheet_name='Sheet1')
workbook = writer.book
worksheet = writer.sheets['Sheet1']
format1 = workbook.add_format({'num_format': '0.00'})
worksheet.set_column('A:A', None, format1)
writer.save()
processed_data = output.getvalue()
return processed_data
@st.cache(suppress_st_warning=True)
def get_dtw_distance(x, y):
distance_dtw = fastdtw(x, y, dist=euclidean)[0]
return distance_dtw
def clustering_basado_en_correlacion():
form = st.form("Correlation Clustering")
posible_countries = ('Todos', 'Argentina', 'Brazil', 'Chile', 'Colombia', 'Mexico', 'Peru')
countries = form.multiselect('¿Qué países desea visualizar?', posible_countries)
if 'Todos' in countries:
countries = ('Argentina', 'Brazil', 'Chile', 'Colombia', 'Mexico', 'Peru')
adtv_p = form.number_input('Ingrese el mínimo Average Daily Traded Value que desea considerar', value=1., format="%.2f")
mktcap_thresh = form.number_input('Ingrese el mínimo Market Cap que desea considerar', value=200., format="%.2f")
start_date = form.selectbox('Ingrese la fecha de inicio que desea considerar', ('3 Meses', '6 Meses', '1 Año'))
period = form.number_input('Defina la frecuencia en la que desea las observaciones (en días)', value=1)
accept = form.form_submit_button('Aceptar')
if accept:
start_date = str(date.today() - relativedelta(months=int(start_date[0])))
for country in countries:
data_, adtv_, marketcap_ = data_request(country, start_date)
# Filtramos para que se cumplan los filtros del usuario en los datos
returns = data_filter(data_, adtv_, marketcap_, adtv_p, mktcap_thresh, period)
# Normalizamos
base = (returns.subtract(returns.mean(0), axis=1)).div(returns.std(axis=0), axis=1)
base = base.sort_index(axis=1)
# Procedemos a calcular correlación y covarianza
corr, covs = base.corr(), base.cov()
file = to_excel(corr)
# Definimos la matriz de distancia
dist_matrix = dist(corr)
hierarchy = linkage(dist_matrix)
ct = 0.54 * max(hierarchy[:, 2])
fig = ff.create_dendrogram(dist_matrix, orientation='left', labels=list(base.columns),
color_threshold=ct, linkagefun=linkage)
fig.update_layout(title='{} desde {} hasta {}'.format(country,
returns.index[0].date(),
returns.index[-1].date()))
if country == 'Brazil':
fig.update_layout(height=2000)
else:
fig.update_layout(height=900)
st.plotly_chart(fig, use_container_width=True)
st.download_button(label='Descargar Matriz de Correlación para {}'.format(country), data=file,
file_name='{}_correlacion.xlsx'.format(country))
def clustering_con_dtw():
form = st.form("Dynamic Time Warping Clustering")
posible_countries = ('Todos', 'Brazil', 'Argentina', 'Chile', 'Colombia', 'Mexico', 'Peru')
countries = form.multiselect('¿Qué países desea visualizar?', posible_countries)
if 'Todos' in countries:
countries = ('Brazil', 'Argentina', 'Chile', 'Colombia', 'Mexico', 'Peru')
adtv_p = form.number_input('Ingrese el mínimo Average Daily Traded Value que desea considerar', value=1.,
format="%.2f")
mktcap_thresh = form.number_input('Ingrese el Mínimo Market Cap que desea considerar', value=200., format="%.2f")
start_date = form.selectbox('Ingrese la fecha de inicio que desea considerar', ('3 Meses', '6 Meses', '1 Año'))
period = form.number_input('Defina la frecuencia en la que desea las observaciones (en días)', value=1)
accept = form.form_submit_button('Aceptar')
if accept:
start_date = str(date.today() - relativedelta(months=int(start_date[0])))
for country in countries:
data_, adtv_, marketcap_ = data_request(country, start_date)
# Filtramos para que se cumplan los filtros del usuario en los datos
returns = data_filter(data_, adtv_, marketcap_, adtv_p, mktcap_thresh, period)
# Normalizamos returns
base = (returns.subtract(returns.mean(0), axis=1)).div(returns.std(axis=0), axis=1)
base = base.sort_index(axis=1)
# Procedemos a calcular correlación y covarianza
N = len(base[:base.index[0]].T)
# Creamos la Matriz de Distancias para DTW
Dist = np.zeros((N, N))
place = st.empty()
for i in range(N):
place.write("Cargando: " + str(round(i*100/N)) + " %")
for j in range(i - 1, N):
company_1 = base.columns[i]
company_2 = base.columns[j]
Dist[i, j] = get_dtw_distance(base[company_1], base[company_2])
# La matriz es simétrica
Dist[j, i] = Dist[i, j]
# Creamos un DataFrame con la matriz de distancias
df = pd.DataFrame(Dist)
df.index = base.columns
df.columns = base.columns
# Pasamos el df a excel para descarga del usuario
file = to_excel(df)
hierarchy = linkage(Dist)
ct = 0.54 * max(hierarchy[:, 2])
fig = ff.create_dendrogram(Dist, orientation='left', labels=list(base.columns),
color_threshold=ct, linkagefun=linkage)
fig.update_layout(
title='{} desde {} hasta {}'.format(country, returns.index[0].date(), returns.index[-1].date()))
if country == 'Brazil':
fig.update_layout(height=2000)
else:
fig.update_layout(height=900)
st.plotly_chart(fig, use_container_width=True)
st.download_button(label='Descargar Matriz de distancias con DTW para {}'.format(country), data=file,
file_name='{}_correlacion.xlsx'.format(country))