Spaces:
Configuration error
Configuration error
#!/usr/bin/env python3 | |
# -*- coding: utf-8 -*- | |
""" | |
Created on Tue Aug 24 09:38:58 2021 | |
@author: benjaminull | |
""" | |
import investpy | |
import datetime as dt | |
from datetime import date | |
import streamlit as st | |
from plotly import graph_objs as go | |
import pandas as pd | |
import pybase64 as base64 | |
import io | |
from plotly.subplots import make_subplots | |
from logs_portal import log | |
def formatnum(numero): | |
return '{:,.2f}'.format(numero).replace(",", "@").replace(".", ",").replace("@", ".") | |
def button_style(): | |
style_button = """ | |
<style> | |
button { | |
display: inline-block; | |
background-color: #e8e8e8; | |
border-radius: 15px; | |
border: 4px #cccccc; | |
color: #4a4a4a; | |
text-align: center; | |
font-size: 20px; | |
padding: 2px; | |
width: 12em; | |
transition: all 0.5s; | |
cursor: pointer; | |
margin: 0px; | |
margin-top: 30px; | |
} | |
button span { | |
cursor: pointer; | |
display: inline-block; | |
position: relative; | |
transition: 0.5s; | |
} | |
button span:after { | |
content: '\00bb'; | |
position: absolute; | |
opacity: 0; | |
top: 0; | |
right: -20px; | |
transition: 0.5s; | |
} | |
button:hover { | |
background-color: #bb1114; | |
color:#e8e8e8; | |
} | |
button:hover span { | |
padding-right: 25px; | |
} | |
button:hover span:after { | |
opacity: 1; | |
right: 0; | |
} | |
.stMarkdown{ | |
margin-bottom:0px;} | |
</style> | |
""" | |
st.markdown(style_button, unsafe_allow_html=True) | |
def get_table_excel_link(df, selected_stocks): | |
towrite = io.BytesIO() | |
downloaded_file = df.to_excel(towrite, encoding='utf-8', index=False, | |
header=True) | |
towrite.seek(0) # reset pointer | |
file_name = 'Data ' + selected_stocks+'.xlsx' | |
style = 'style="color:black;text-decoration: none; font-size:18px;"' | |
name_mark = "Descargar " + selected_stocks + ".xlsx" | |
b64 = base64.b64encode(towrite.read()).decode() # some strings | |
linko= f'<center><a href="data:application/vnd.openxmlformats-officedocument.spreadsheetml.sheet;base64,{b64}" '+style+'download="'+file_name+'"><button>'+name_mark+'</button></a></center>' | |
return linko | |
def style_table(): | |
# tr:hover {background-color: #E8E8E8; | |
# color:#BB1114;} | |
style_table = """ | |
<style> | |
tbody tr:hover { | |
color:#BB1114;} | |
tr { line-height: 5px; } | |
thead { | |
background-color:#BB1114 ; | |
color: #E8E8E8; | |
} | |
tbody tr:nth-child(odd) { | |
background-color: #fff; | |
} | |
tbody tr:nth-child(even) { | |
background-color: #eee; | |
} | |
.css-1rcck9u{ | |
padding:0.25rem;} | |
tbody tr:nth-child(odd) | |
stTable { | |
border-collapse: collapse; | |
background-color:red; | |
margin: 25px 0; | |
font-size: 0.9em; | |
min-width: 400px; | |
box-shadow: 0 0 20px rgba(0, 0, 0, 0.15); | |
} | |
table{ | |
margin-top:0px; | |
font-size:12px; | |
padding:0px; | |
height:200px;} | |
@keyframes slidein { | |
from { | |
margin-left: 100%; | |
width: 300% | |
} | |
to { | |
margin-left: 0%; | |
width: 100%; | |
} | |
} | |
</style> | |
""" | |
st.markdown(style_table, unsafe_allow_html=True) | |
def grafico_avanzado_com(col_filter, col_button, col_chart, lista, TODAY): | |
titulo = "Commodities" | |
options = lista | |
fecha_0 = col_filter.selectbox("Periodo ", ["1 year", "1 week", | |
"1 month", "3 month", | |
"6 month", "5 year", | |
"10 year", "15 year"]) | |
info = pd.DataFrame() | |
orden = ["Date"] | |
fecha1 = seleccionar_fecha(fecha_0) | |
fig2 = go.Figure() | |
for price in options: | |
data = investpy.commodities.get_commodity_historical_data( | |
price, | |
from_date=fecha1, | |
to_date=TODAY) | |
info[price] = data['Close'] | |
close_ = go.Scatter(x=data.index, | |
y=data['Close']/data.iloc[0]["Close"], | |
name=price) | |
fig2.add_trace(close_) | |
orden.append(price) | |
info["Date"] = info.index | |
info["Date"] = info["Date"].dt.date | |
info = info[orden] | |
col_button.markdown(get_table_excel_link(info, "Commodities"), | |
unsafe_allow_html=True) | |
fig2.layout.update(title_text=titulo, | |
xaxis_rangeslider_visible=True, | |
height=500, | |
margin_b=20, | |
margin_r=20, | |
margin_l=20, | |
legend=dict(orientation="h", | |
yanchor="bottom", | |
y=1.02, | |
xanchor="right", | |
x=1)) | |
col_chart.plotly_chart(fig2, use_container_width=True) | |
def grafico_avanzado_div(col_chart, col_filter, col_button, monedabase, lista, TODAY): | |
button_style() | |
titulo = "Divisas" | |
base = "USD" | |
options = lista | |
fecha_0 = col_filter.selectbox("Periodo", ["1 year", | |
"1 week", | |
"1 month", | |
"3 month", | |
"6 month", | |
"5 year", | |
"10 year", | |
"15 year"]) | |
info = pd.DataFrame() | |
orden = ["Date"] | |
fig = make_subplots(specs=[[{"secondary_y": True}]]) | |
fecha1 = seleccionar_fecha(fecha_0) | |
i = 0 | |
for price in options: | |
titulo = titulo | |
selected_cc = base + "/" + price | |
data = investpy.currency_crosses.get_currency_cross_historical_data(selected_cc, from_date=fecha1, to_date=TODAY) | |
info[price] = data['Close'] | |
close_ = go.Scatter(x=data.index, | |
y=data['Close']/data.iloc[0]['Close'], | |
name=price) | |
fig.add_trace(close_) | |
orden.append(price) | |
i = i+1 | |
info["Date"] = info.index | |
info["Date"] = info["Date"].dt.date | |
info = info[orden] | |
col_button.markdown(get_table_excel_link(info, "Divisas"), | |
unsafe_allow_html=True) | |
fig.layout.update(title_text=titulo, | |
xaxis_rangeslider_visible=True, | |
height=500, | |
margin_b=20, | |
margin_r=20, | |
margin_l=20, | |
legend=dict(orientation="h", | |
yanchor="bottom", | |
y=1.02, | |
xanchor="right", | |
x=1)) | |
col_chart.plotly_chart(fig, use_container_width=True) | |
import plotly.express as px | |
def grafico_avanzado_ind(col_chart, | |
col_filter, | |
col_button, | |
lista, | |
countries, | |
today, fechas): | |
button_style() | |
dict_indices = dict(zip(lista, countries)) | |
fecha_0 = col_filter.selectbox("Periodo ", fechas) | |
fecha1 = seleccionar_fecha(fecha_0) | |
titulo = "Indices" | |
options = lista | |
info = pd.DataFrame() | |
orden = ["Date"] | |
fig2 = go.Figure() | |
i = 0 | |
for price in options: | |
data = investpy.get_index_historical_data( | |
index=price, | |
country=dict_indices[price], | |
from_date=fecha1, | |
to_date=today) | |
info[price] = data['Close'] | |
close_ = go.Scatter(x=data.index, | |
y=data['Close']/data.iloc[0]["Close"], | |
name=price, | |
line=dict( | |
color=px.colors.qualitative.Pastel[i])) | |
fig2.add_trace(close_) | |
orden.append(price) | |
i=i+1 | |
info["Date"] = info.index | |
info["Date"] = info["Date"].dt.date | |
info = info[orden] | |
col_button.markdown(get_table_excel_link(info, "Indices"), | |
unsafe_allow_html=True) | |
fig2.layout.update(title_text=titulo, | |
xaxis_rangeslider_visible=True, | |
height=500, | |
margin_b=20, | |
margin_r=20, | |
margin_l=20, | |
legend=dict(orientation="h", | |
yanchor="bottom", | |
y=1.02, | |
xanchor="right", | |
x=1)) | |
col_chart.plotly_chart(fig2, use_container_width=True) | |
def grafico_avanzado_tasas(col_filter, col_button, col_chart, bonds, TODAY): | |
titulo = "Tasas" | |
fecha_0 = col_filter.selectbox("Periodo ", ["1 year", "1 week", | |
"1 month", "3 month", | |
"6 month", "5 year", | |
"10 year", "15 year"]) | |
fecha1 = seleccionar_fecha(fecha_0) | |
options = bonds | |
info = pd.DataFrame() | |
orden = ["Date"] | |
fig2 = go.Figure() | |
i = 0 | |
for price in options: | |
i = i + 1 | |
data = investpy.get_bond_historical_data(bond=price, | |
from_date=fecha1, | |
to_date=TODAY) | |
info[price] = data['Close'] | |
close_ = go.Scatter(x=data.index, | |
y=data['Close']/data.iloc[0]["Close"], | |
name=price, | |
line=dict( | |
color=px.colors.qualitative.Pastel[i])) | |
fig2.add_trace(close_) | |
orden.append(price) | |
info["Date"] = info.index | |
info["Date"] = info["Date"].dt.date | |
info = info[orden] | |
col_button.markdown(get_table_excel_link(info, "Tasas"), | |
unsafe_allow_html=True) | |
# place0.header(titulo) | |
fig2.layout.update(title_text=titulo, | |
xaxis_rangeslider_visible=True, | |
height=500, | |
margin_b=20, | |
margin_r=20, | |
margin_l=20, | |
legend=dict(orientation="h", | |
yanchor="bottom", | |
y=1.02, | |
xanchor="right", | |
x=1)) | |
col_chart.plotly_chart(fig2, use_container_width=True) | |
def view_macro(): | |
col_filter1, col_button1, col_filter2, col_button2 = st.columns(4) | |
col_chart1, col_chart2 = st.columns(2) | |
index = ["S&P CLX IPSA", | |
"S&P Merval", | |
"Bovespa", | |
"S&P Lima General", | |
"COLCAP", | |
"S&P/BMV IPC", | |
"S&P 500",] | |
# "FTSE 100", | |
# "China A50", | |
# "Nikkei 225"] | |
countries = ["chile", | |
"argentina", | |
"brazil", | |
"peru", | |
"colombia", | |
"mexico", | |
"united states",] | |
# "united kingdom", | |
# "china", | |
# "japan"] | |
place2_index_st = st.empty() | |
today = date.today().strftime("%d/%m/%Y") | |
fechas = ["1 year", | |
"1 week", | |
"1 month", | |
"3 month", | |
"6 month", | |
"5 year", | |
"10 year", | |
"15 year"] | |
cc2_i = ["USD", "EUR", 'MXN', "GBP"] | |
cc2_f = ["CLP", "EUR", "GBP", "MXN", "JPY", "BRL", "PEN"] | |
try: | |
grafico_avanzado_ind(col_chart1, | |
col_filter1, | |
col_button1, | |
index, | |
countries, | |
today, | |
fechas) | |
except Exception as exc: | |
st.write(exc) | |
grafico_avanzado_div(col_chart2, | |
col_filter2, | |
col_button2, | |
cc2_i, | |
cc2_f, | |
today) | |
commodity = sorted(["Copper", | |
"Silver", | |
"Gold", | |
"Platinum", | |
'Brent Oil', | |
'Crude Oil WTI', | |
"Natural Gas"]) | |
col_filter1, col_button1, col_filter2, col_button2 = st.columns(4) | |
col_chart1, col_chart2 = st.columns(2) | |
grafico_avanzado_com(col_filter1, col_button1, col_chart1, commodity, today) | |
bonds = ["Chile 10Y", "Peru 10Y", "China 10Y", "U.S. 10Y", "U.K. 10Y", | |
"Germany 10y", "Japan 10Y", "Brazil 10Y"] | |
try: | |
grafico_avanzado_tasas(col_filter2, col_button2, col_chart2, bonds, today) | |
except Exception as exc: | |
st.write(exc) | |
def tabla_bonos(stocks, TODAY): | |
tabla = pd.DataFrame() | |
year_ago = date.today() - dt.timedelta(days=365) | |
year_ago = year_ago.strftime("%d/%m/%Y") | |
for stock in stocks: | |
precios = investpy.get_bond_historical_data(bond=stock, | |
from_date=year_ago, | |
to_date=TODAY) | |
precios = precios["Close"] | |
last_price = precios.iloc[-1] | |
oned = precios.iloc[-2] | |
onew = precios.iloc[-5] | |
onem = precios.iloc[-20] | |
oney = precios.iloc[0] | |
return1m = str(round((last_price - onem), 2))+"%" | |
return1d = str(round((last_price - oned), 2))+"%" | |
return1w = str(round((last_price - onew), 2))+"%" | |
return1y = str(round((last_price - oney), 2))+"%" | |
last_price = str(round(last_price, 2))+"%" | |
tabla = tabla.append([[last_price, return1d, return1w, return1m, | |
return1y]]) | |
tabla.columns = ["Tasa", "1d", "1w", "1m", "1y"] | |
tabla.index = stocks | |
return tabla | |
def tabla_pendiente(stocks, TODAY): | |
tabla = pd.DataFrame() | |
year_ago = date.today() - dt.timedelta(days=365) | |
year_ago = year_ago.strftime("%d/%m/%Y") | |
for stock in stocks: | |
precios1 = investpy.get_bond_historical_data(bond=stock + " 2Y", | |
from_date=year_ago, | |
to_date=TODAY) | |
precios2 = investpy.get_bond_historical_data(bond=stock + " 10Y", | |
from_date=year_ago, | |
to_date=TODAY) | |
precios = precios2 - precios1 | |
precios = precios["Close"] | |
last_price = precios.iloc[-1] | |
oned = precios.iloc[-2] | |
onew = precios.iloc[-5] | |
onem = precios.iloc[-20] | |
oney = precios.iloc[0] | |
return1m = str(round((last_price - onem), 2))+"%" | |
return1d = str(round((last_price - oned), 2))+"%" | |
return1w = str(round((last_price - onew), 2))+"%" | |
return1y = str(round((last_price - oney), 2))+"%" | |
last_price = str(round((last_price), 2))+"%" | |
tabla = tabla.append([[last_price, return1d, return1w, return1m, | |
return1y]]) | |
tabla.columns = ["Pendiente", "1d", "1w", "1m", "1y"] | |
tabla.index = stocks | |
return tabla | |
def tabla_divisas(stocks, TODAY): | |
tabla = pd.DataFrame() | |
year_ago = date.today() - dt.timedelta(days=365) | |
year_ago = year_ago.strftime("%d/%m/%Y") | |
for stock in stocks: | |
precios = investpy.currency_crosses.get_currency_cross_historical_data( | |
stock, | |
from_date=year_ago, | |
to_date=TODAY) | |
precios = precios["Close"] | |
last_price = precios.iloc[-1] | |
oned = precios.iloc[-2] | |
onew = precios.iloc[-5] | |
onem = precios.iloc[-20] | |
oney = precios.iloc[0] | |
return1m = str(round((last_price/onem-1)*100, 2))+"%" | |
return1d = str(round((last_price/oned-1)*100, 2))+"%" | |
return1w = str(round((last_price/onew-1)*100, 2))+"%" | |
return1y = str(round((last_price/oney-1)*100, 2))+"%" | |
last_price = "$" + str(round(last_price, 2)) | |
tabla = tabla.append([[last_price, return1d, return1w, return1m, | |
return1y]]) | |
tabla.columns = ["Precio","1d", "1w", "1m", "1y"] | |
tabla.index = stocks | |
return tabla | |
def tabla_commodity(stocks, TODAY): | |
tabla = pd.DataFrame() | |
year_ago = date.today() - dt.timedelta(days=365) | |
year_ago = year_ago.strftime("%d/%m/%Y") | |
for stock in stocks: | |
precios = investpy.commodities.get_commodity_historical_data( | |
commodity=stock, | |
from_date=year_ago, | |
to_date=TODAY) | |
precios = precios["Close"] | |
last_price = precios.iloc[-1] | |
oned = precios.iloc[-2] | |
onew = precios.iloc[-5] | |
onem = precios.iloc[-20] | |
oney = precios.iloc[0] | |
return1m = str(round((last_price/onem-1)*100, 2))+"%" | |
return1d = str(round((last_price/oned-1)*100, 2))+"%" | |
return1w = str(round((last_price/onew-1)*100, 2))+"%" | |
return1y = str(round((last_price/oney-1)*100, 2))+"%" | |
last_price = "$" + str(round(last_price, 2)) | |
tabla = tabla.append([[last_price, return1d, return1w, return1m, return1y]]) | |
tabla.columns = ["Precio","1d", "1w", "1m", "1y"] | |
tabla.index = stocks | |
return tabla | |
def tabla_indices(index, countries, TODAY): | |
tabla = pd.DataFrame() | |
year_ago = date.today() - dt.timedelta(days=365) | |
year_ago = year_ago.strftime("%d/%m/%Y") | |
for i in range(len(index)): | |
precios = investpy.get_index_historical_data(index=index[i], | |
country=countries[i], | |
from_date=year_ago, | |
to_date=TODAY) | |
precios = precios["Close"] | |
last_price = precios.iloc[-1] | |
oned = precios.iloc[-2] | |
onew = precios.iloc[-5] | |
onem = precios.iloc[-20] | |
oney = precios.iloc[0] | |
return1m = str(round((last_price/onem-1)*100, 2))+"%" | |
return1d = str(round((last_price/oned-1)*100, 2))+"%" | |
return1w = str(round((last_price/onew-1)*100, 2))+"%" | |
return1y = str(round((last_price/oney-1)*100, 2))+"%" | |
last_price = "$" + str(round(last_price, 2)) | |
tabla = tabla.append([[last_price, return1d, return1w, return1m, return1y]]) | |
tabla.columns = ["Precio","1d", "1w", "1m", "1y"] | |
tabla.index = index | |
return tabla | |
def to_number(valor): | |
if valor == "1w": | |
value = 0.25 | |
if valor == "1m": | |
value = 1 | |
elif valor == "3m": | |
value = 3 | |
elif valor == "6m": | |
value = 6 | |
return value | |
def seleccionar_fecha(fecha_select): | |
if fecha_select == "1 week" or fecha_select == "1w": | |
fec_in = date.today() - dt.timedelta(days=7) | |
elif fecha_select == "1 month": | |
fec_in = date.today() - dt.timedelta(days=30) | |
elif fecha_select == "3 month": | |
fec_in = date.today() - dt.timedelta(days=90) | |
elif fecha_select == "6 month": | |
fec_in = date.today() - dt.timedelta(days=180) | |
elif fecha_select == "1 year": | |
fec_in = date.today() - dt.timedelta(days=365) | |
elif fecha_select == "5 year": | |
fec_in = date.today() - dt.timedelta(days=365*5) | |
elif fecha_select == "10 year": | |
fec_in = date.today() - dt.timedelta(days=365*10) | |
elif fecha_select == "15 year": | |
fec_in = date.today() - dt.timedelta(days=365*15) | |
fec_in = fec_in.strftime("%d/%m/%Y") | |
return fec_in | |
def curva_yield(): | |
today = date.today() | |
col1, col2 = st.columns(2) | |
pais = col1.selectbox("Pais", ["Chile", "Brazil", "Mexico", "Colombia", | |
"Peru", "Japan", "U.S."]) | |
meses = col2.selectbox("periodo", ["1w", "1m", "3m", "6m", "1y"]) | |
if meses == "1w": | |
one_months_ago = seleccionar_fecha(meses) | |
elif meses == "1y": | |
one_months_ago = today.replace(year=today.year - 1).strftime("%d/%m/%Y") | |
else: | |
mes = to_number(meses) | |
one_months_ago = today.replace(month=today.month - mes).strftime("%d/%m/%Y") | |
today = today.strftime("%d/%m/%Y") | |
if pais == "Chile": | |
bonos = ['Chile 1Y', 'Chile 2Y', 'Chile 3Y', 'Chile 4Y', 'Chile 5Y', | |
'Chile 8Y', 'Chile 10Y'] | |
proporcion = [1, 2, 3, 4, 5, 8, 10] | |
elif pais == "Brazil": | |
bonos = ['Brazil 3m', 'Brazil 6m', 'Brazil 1Y', 'Brazil 2Y', | |
'Brazil 3Y', 'Brazil 5Y', 'Brazil 8Y', 'Brazil 10Y'] | |
proporcion = [0.25, 0.5, 1, 2, 3, 5, 8, 10] | |
elif pais == "Mexico": | |
bonos = ['Mexico 3m', 'Mexico 6m', 'Mexico 1Y', "Mexico 3Y", | |
'Mexico 5Y', 'Mexico 7Y', 'Mexico 10Y'] | |
proporcion = [0.25, 0.5, 1, 3, 5, 7, 10] | |
elif pais == "Colombia": | |
bonos = ['Colombia 1Y', 'Colombia 4Y', 'Colombia 5Y', 'Colombia 10Y'] | |
proporcion = [1, 4, 5, 10] | |
elif pais == "Peru": | |
bonos = ['Peru 2Y', 'Peru 5Y', 'Peru 10Y'] | |
proporcion = [2, 5, 10] | |
elif pais == "Japan": | |
bonos = ['Japan 3m', 'Japan 6m', 'Japan 1Y', "Japan 2Y", | |
'Japan 3Y', 'Japan 5Y', 'Japan 8Y', 'Japan 10Y'] | |
proporcion = [0.25, 0.5, 1, 3, 5, 7, 10] | |
elif pais == "U.S.": | |
bonos = ['U.S. 3m', 'U.S. 6m', 'U.S. 1Y', "U.S. 2Y", | |
'U.S. 3Y', 'U.S. 5Y', 'U.S. 8Y', 'U.S. 10Y'] | |
proporcion = [0.25, 0.5, 1, 3, 5, 7, 10] | |
data_today = [] | |
data_one_month = [] | |
delta = [] | |
for bono in bonos: | |
data_bono = investpy.bonds.get_bond_historical_data(bono, | |
one_months_ago, | |
today) | |
data_today.append(data_bono.iloc[-1]["Close"]) | |
data_one_month.append(data_bono.iloc[0]["Close"]) | |
delta.append(data_bono.iloc[-1]["Close"] - data_bono.iloc[0]["Close"]) | |
def plot_tasas(): | |
fig = go.Figure() | |
today = go.Scatter(x=proporcion, y=data_today, name="Yield today", | |
line=dict(color="darkred")) | |
onemonth = go.Scatter(x=proporcion, y=data_one_month, name="Yield" + | |
meses + " ago", line=dict(color="dimgrey")) | |
fig.add_trace(today) | |
fig.add_trace(onemonth) | |
fig.layout.update(title_text="", | |
width=900, height=300, margin_b=0, margin_t=0, | |
margin_r=0, margin_l=0, legend=dict(orientation="h", | |
yanchor="bottom", | |
y=1.0, | |
xanchor="right", | |
x=1), | |
xaxis={'visible': False, | |
'showticklabels': False}) | |
st.plotly_chart(fig) | |
fig2 = go.Figure() | |
fig2.add_trace(go.Bar( | |
x=proporcion, | |
y=delta, | |
name='Delta', | |
marker_color='dimgrey' | |
)) | |
if pais == "Brazil" or pais == "Mexico": | |
fig2.layout.update(title_text="", | |
width=900, height=200, margin_b=0, margin_t=0, | |
margin_r=0, margin_l=15, | |
xaxis=go.layout.XAxis(tickangle=70)) | |
fig2.update_xaxes(range=[-0.3, proporcion[-1]+0.5], ticktext=bonos, | |
tickvals=proporcion) | |
else: | |
fig2.layout.update(title_text="", | |
width=900, height=200, margin_b=0, margin_t=0, | |
margin_r=0, margin_l=0, | |
xaxis=go.layout.XAxis(tickangle=70)) | |
fig2.update_xaxes(ticktext=bonos, tickvals=proporcion, | |
range=[0.5, proporcion[-1]+0.5]) | |
fig2.update_layout(barmode='group') | |
st.plotly_chart(fig2) | |
plot_tasas() | |
def plot_raw_data(col, data, color, prefijo, ancho, largo): | |
fig = go.Figure() | |
close_ = go.Scatter(x=data.index, y=data['Close'], name="stock_close", | |
line=dict(color=color), fill='tonexty') | |
fig.add_trace(close_) | |
fig.layout.update(title_text="", xaxis_rangeslider_visible=True, | |
width=ancho, height=largo, margin_b=0, margin_t=0, | |
margin_r=0, margin_l=0) | |
fig.update_yaxes(range=[min(data['Close'])/1.05, | |
max(data['Close'])*1.05], tickprefix=prefijo) | |
col.plotly_chart(fig, use_container_width=True) | |
# Brasil, Mexico, Chile, Colombia, Peru, USA, Alemania, UK, China, Japon | |
def tasa10y_2y(): | |
button_style() | |
TODAY = date.today().strftime("%d/%m/%Y") | |
bond_10y = ["Chile 10Y", "Peru 10Y", "China 10Y", "U.S. 10Y", "U.K. 10Y", | |
"Germany 10y", "Japan 10Y", "Brazil 10Y"] | |
bond_2y = ["Chile 2Y", | |
"Peru 2Y", "China 2Y", "U.S. 2Y", "U.K. 2Y", "Germany 2y", | |
"Japan 2Y", "Brazil 2Y"] | |
paises = ["Chile", "Peru", "China", "U.S.", "U.K.", "Alemania", | |
"Japon", "Brasil"] | |
col1, col2 = st.columns((1.681, 1)) | |
selected = col1.selectbox("Seleccionar pais", paises) | |
fecha_select = col2.selectbox(" ", ["1 year", "1 week", "1 month", | |
"3 month", "6 month", "5 year", | |
"10 year", "15 year"]) | |
fec_in = seleccionar_fecha(fecha_select) | |
data_bonds10y = investpy.get_bond_historical_data( | |
bond=bond_10y[paises.index(selected)], | |
from_date=fec_in, | |
to_date=TODAY) | |
data_bonds2y = investpy.get_bond_historical_data( | |
bond=bond_2y[paises.index(selected)], | |
from_date=fec_in, | |
to_date=TODAY) | |
data_final = data_bonds10y["Close"]-data_bonds2y["Close"] | |
fig = go.Figure() | |
close_ = go.Scatter(x=data_bonds10y.index, y=data_final, name="Delta", | |
line=dict(color="midnightblue"), fill='tonexty') | |
fig.add_trace(close_) | |
fig.layout.update(title_text="", xaxis_rangeslider_visible=True, | |
width=900, height=400, margin_b=0, margin_t=0, | |
margin_r=0, margin_l=0) | |
fig.update_yaxes(range=[min(data_final)/1.05, | |
max(data_final)*1.05]) | |
cols = st.columns((1.681*2.681, 1.681, 1)) | |
col1, col2 = st.columns((1.681, 1)) | |
col1.plotly_chart(fig, use_container_width=True) | |
data_final2 = pd.DataFrame() | |
data_final2["Date"] = list(data_final.index) | |
cierre = list(data_bonds10y["Close"]-data_bonds2y["Close"]) | |
data_final2["Delta"] = list(data_bonds10y["Close"]-data_bonds2y["Close"]) | |
last_price = cierre[-1] | |
first_price = cierre[0] | |
returns = round(((last_price - first_price)), 2) | |
cols[1].markdown('<p style="font-size:15px; padding-left:20px; margin-bottom:0px;">'+"Tasa 10Y - 2Y"+"</p>", unsafe_allow_html=True) | |
cols[1].markdown('<p style="font-size:35px; padding-left:30px;">'+formatnum(last_price)+"%</p>", unsafe_allow_html=True) | |
if returns > 0: | |
cols[2].markdown('<p style="font-size:22px; padding-top:27px; color:green;">▲ '+formatnum(returns)+" %</p>", unsafe_allow_html=True) | |
else: | |
cols[2].markdown('<p style="font-size:22px; padding-top:27px; color:red;">▼ '+formatnum(returns)+" %</p>", unsafe_allow_html=True) | |
st.markdown(get_table_excel_link(data_final2, selected), | |
unsafe_allow_html=True) | |
paises = ["Brazil", "Chile", | |
"Peru", "China", "U.S.", "U.K.", "Germany", | |
"Japan"] | |
style_table() | |
col2.dataframe(tabla_pendiente(paises, TODAY)) | |
def bonos(): | |
st.sidebar.subheader("Opciones") | |
largo = 350 | |
ancho = 450 | |
button_style() | |
placeholder = st.empty() | |
placeholder1 = st.empty() | |
TODAY = date.today().strftime("%d/%m/%Y") | |
cols = st.columns((1.681*2.5, 1.681, 1)) | |
col1, col2 = st.columns((1.6, 1)) | |
paises = ["Brazil", "Mexico", "Chile", "Colombia", | |
"Peru", "China", "U.S.", "U.K.", "Germany", | |
"Japan"] | |
time = ["2Y", "10Y"] | |
# ################# | |
selected_pais = cols[0].selectbox(" ", paises) | |
selected_time = cols[1].selectbox(" ", time) | |
fecha_select = cols[2].selectbox(" ", ["1 year", "1 week", "1 month", | |
"3 month", "6 month", "5 year", | |
"10 year", "15 year"]) | |
fec_in = seleccionar_fecha(fecha_select) | |
selected = selected_pais + " " + selected_time | |
data_bonds = investpy.get_bond_historical_data(bond=selected, | |
from_date=fec_in, | |
to_date=TODAY) | |
plot_raw_data(col1, data_bonds, 'dimgrey', "", ancho, largo) | |
last_price = data_bonds.iloc[-1]["Close"] | |
first_price = data_bonds.iloc[0]["Close"] | |
returns = round((last_price - first_price), 2) | |
cols[0].title("Tasa " + selected) | |
cols[1].markdown('<p style="font-size:15px; padding-left:20px; margin-bottom:0px;">'+"Tasa"+"</p>", unsafe_allow_html=True) | |
cols[1].markdown('<p style="font-size:35px; padding-left:30px;">'+formatnum(last_price)+"%</p>", unsafe_allow_html=True) | |
if returns > 0: | |
cols[2].markdown('<p style="font-size:22px; padding-top:27px; color:green;">▲ +'+ formatnum(returns)+" %</p>", unsafe_allow_html=True) | |
else: | |
cols[2].markdown('<p style="font-size:22px; padding-top:27px; color:red;">▼ '+formatnum(returns)+" %</p>", unsafe_allow_html=True) | |
# ################# | |
style_table() | |
bonds10y = ["Brazil 10Y", | |
"Mexico 10Y", | |
"Chile 10Y", | |
"Colombia 10Y", | |
"Peru 10Y","China 10Y", "U.S. 10Y", "U.K. 10Y", "Germany 10y", | |
"Japan 10Y", ] | |
col2.dataframe(tabla_bonos(bonds10y, TODAY)) | |
data_bonds["Date"] = data_bonds.index | |
data_bonds["Date"] = data_bonds["Date"].dt.date | |
data_toexcel = data_bonds[["Date", "Close"]] | |
st.markdown(get_table_excel_link(data_toexcel, selected), | |
unsafe_allow_html=True) | |
# graph_advance = st.sidebar.checkbox("Graficos avanzados") | |
# if graph_advance: | |
def Commodities(): | |
st.sidebar.subheader("Opciones") | |
largo = 350 | |
ancho = 450 | |
placeholder = st.empty() | |
placeholder1 = st.empty() | |
button_style() | |
TODAY = date.today().strftime("%d/%m/%Y") | |
col1, col2 = st.columns((1.681, 1)) | |
cols = st.columns((1.681*2.681, 1.681, 1)) | |
commodity = sorted(["Copper", "Silver", "Gold", "Platinum", 'Brent Oil', | |
'Crude Oil WTI', "Natural Gas"]) | |
# ################# | |
selected_com = col1.selectbox(" ", commodity) | |
fecha_select = col2.selectbox(" ", ["1 year", "1 week", "1 month", | |
"3 month", "6 month", "5 year", | |
"10 year", "15 year"]) | |
fec_in = seleccionar_fecha(fecha_select) | |
data_com = investpy.commodities.get_commodity_historical_data( | |
commodity=selected_com, | |
from_date=fec_in, | |
to_date=TODAY) | |
col1, col2 = st.columns((1.681, 1)) | |
plot_raw_data(col1, data_com, 'dimgrey', "", ancho, largo) | |
last_price = data_com.iloc[-1]["Close"] | |
first_price = data_com.iloc[0]["Close"] | |
returns = round(((last_price/first_price-1)*100), 2) | |
cols[0].title("Precio " + selected_com) | |
cols[1].markdown('<h4 style="font-size:15px; padding-left:20px; margin-bottom:0px;">'+"Precio"+"</h4>", unsafe_allow_html=True) | |
cols[1].markdown('<p style="font-size:30px; padding-left:30px;">$'+formatnum(last_price)+"</p>", unsafe_allow_html=True) | |
if returns > 0: | |
cols[2].markdown('<p style="font-size:22px; padding-top:27px; color:green;">▲ +'+formatnum(returns)+" %</p>", unsafe_allow_html=True) | |
else: | |
cols[2].markdown('<p style="font-size:22px; padding-top:27px; color:red;">▼ '+formatnum(returns)+" %</p>", unsafe_allow_html=True) | |
################## | |
style_table() | |
col2.dataframe(tabla_commodity(commodity, TODAY)) | |
data_com["Date"] = data_com.index | |
data_com["Date"] = data_com["Date"].dt.date | |
data_com_toexcel = data_com[["Date", "Close"]] | |
st.markdown(get_table_excel_link(data_com_toexcel, selected_com), | |
unsafe_allow_html=True) | |
def Indices(): | |
st.sidebar.subheader("Opciones") | |
largo = 350 | |
ancho = 450 | |
placeholder = st.empty() | |
placeholder1 = st.empty() | |
button_style() | |
TODAY = date.today().strftime("%d/%m/%Y") | |
col1, col2 = st.columns((1.681, 1)) | |
cols = st.columns((1.681*2.681, 1.681, 1.2)) | |
index = ["S&P CLX IPSA", "S&P Merval", "Bovespa", "S&P Lima General", | |
"COLCAP", "S&P/BMV IPC", "S&P 500", "FTSE 100", "China A50", | |
"Nikkei 225"] | |
countries = ["chile", "argentina", "brazil", "peru", "colombia", "mexico", | |
"united states", "united kingdom", "china", "japan"] | |
################## | |
selected_index = col1.selectbox(" ", index) | |
fecha_select = col2.selectbox(" ", ["1 year", "1 week", "1 month", | |
"3 month", "6 month", "5 year", | |
"10 year", "15 year"]) | |
fec_in = seleccionar_fecha(fecha_select) | |
data_index = investpy.get_index_historical_data( | |
index=selected_index, | |
country=countries[index.index(selected_index)], | |
from_date=fec_in, | |
to_date=TODAY) | |
col1, col2 = st.columns((1.681, 1)) | |
plot_raw_data(col1, data_index, 'dimgrey', "", ancho, largo) | |
last_price = data_index.iloc[-1]["Close"] | |
first_price = data_index.iloc[0]["Close"] | |
returns = round(((last_price/first_price-1)*100), 2) | |
cols[0].title("Precio " + selected_index) | |
cols[1].markdown('<h4 style="font-size:15px; padding-left:20px; margin-bottom:0px;">'+"Precio"+"</h4>", unsafe_allow_html=True) | |
cols[1].markdown('<p style="font-size:30px; padding-left:30px;">$'+formatnum(last_price)+"</p>", unsafe_allow_html=True) | |
if returns > 0: | |
cols[2].markdown('<p style="font-size:22px; padding-top:27px; color:green;">▲ +'+formatnum(returns)+" %</p>", unsafe_allow_html=True) | |
else: | |
cols[2].markdown('<p style="font-size:22px; padding-top:27px; color:red;">▼ '+formatnum(returns)+" %</p>", unsafe_allow_html=True) | |
################## | |
style_table() | |
col2.dataframe(tabla_indices(index, countries, TODAY)) | |
data_index["Date"] = data_index.index | |
data_index["Date"] = data_index["Date"].dt.date | |
data_index_toexcel = data_index[["Date", "Close"]] | |
st.markdown(get_table_excel_link(data_index_toexcel, selected_index), | |
unsafe_allow_html=True) | |
def Divisas(): | |
st.sidebar.subheader("Opciones") | |
largo = 350 | |
ancho = 450 | |
placeholder = st.empty() | |
placeholder1 = st.empty() | |
button_style() | |
TODAY = date.today().strftime("%d/%m/%Y") | |
cols = st.columns(3) | |
cc1 = ["USD/CLP", "EUR/CLP", "GBP/CLP", "BRL/CLP", "JPY/CLP", "MXN/CLP", | |
"PEN/CLP"] | |
################## | |
cc2_i = ["USD", "EUR", 'MXN', "GBP"] | |
cc2_f = ["CLP", "USD", "EUR", "GBP", "MXN", "JPY", "BRL", "PEN"] | |
################## | |
selected_cc2_i = cols[0].selectbox(" ", cc2_i) | |
selected_cc2_f = cols[1].selectbox(" ", cc2_f) | |
selected_cc2 = selected_cc2_i + "/" + selected_cc2_f | |
fecha_select2 = cols[2].selectbox(" ", ["1 year", "1 week", "1 month", | |
"3 month", "6 month", | |
"5 year", "10 year", | |
"15 year"]) | |
fec_in2 = seleccionar_fecha(fecha_select2) | |
data_cc2 = investpy.currency_crosses.get_currency_cross_historical_data( | |
selected_cc2, from_date=fec_in2, to_date=TODAY) | |
cols = st.columns((1.681*2.681, 1.681, 1)) | |
col1, col2 = st.columns((1.681, 1)) | |
plot_raw_data(col1, data_cc2, 'midnightblue', "", ancho, largo) | |
last_price = data_cc2.iloc[-1]["Close"] | |
first_price = data_cc2.iloc[0]["Close"] | |
returns = round(((last_price/first_price-1)*100), 2) | |
cols[0].title(selected_cc2) | |
cols[1].markdown('<p style="font-size:15px; padding-left:15px; margin-bottom:0px;">'+"Precio"+"</p>", unsafe_allow_html=True) | |
cols[1].markdown('<p style="font-size:30px; padding-left:30px;">' + formatnum(last_price)+ " "+selected_cc2_f +"</p>", unsafe_allow_html=True) | |
if returns > 0: | |
cols[2].markdown('<p style="font-size:22px; padding-top:27px; color:green;">▲ '+formatnum(returns)+" %</p>", unsafe_allow_html=True) | |
else: | |
cols[2].markdown('<p style="font-size:22px; padding-top:27px; color:red;">▼ '+formatnum(returns)+" %</p>", unsafe_allow_html=True) | |
style_table() | |
# col1.dataframe(tabla_indices(index, countries, TODAY)) | |
# col2.dataframe(tabla_indices(index2, countries, TODAY)) | |
data_cc2["Date"] = data_cc2.index | |
data_cc2["Date"] = data_cc2["Date"].dt.date | |
data_cc2_toexcel = data_cc2[["Date", "Close"]] | |
st.markdown(get_table_excel_link(data_cc2_toexcel, selected_cc2), | |
unsafe_allow_html=True) | |
col2.dataframe(tabla_divisas(cc1, TODAY)) | |